
©2025 Published in 11th International Symposium on Intelligent Technologies in 
 

Engineering and Science 16-18 May 2025 (ISITES2025 Diyarbakır - Turkey)  

 
 

Reservoir Computing with Fractional-Order Chaos for AES-Compatible 

Cryptographic Applications 

 
1Fatih ŞAHİN and *Gürkan KAVURAN 

1Malatya Metropolitan Municipality, Turkey 

*2Faculty of Engineering and Natural Sciences, Department of Electrical and Electronics Engineering, Malatya 

Turgut Özal University, Turkey 

Abstract: 

This study presents a method of secure key generation based on fractional-order chaotic systems and 

Echo State Networks (ESNs). In this case, the time series data of a chaotic system is generated from the 

fractional order Lorenz system using the Adams–Bashforth–Moulton method that solves the system 

numerically. An ESN is built with a fixed random reservoir that is trained using one state variable as the 

input and another as the target output. Afterwards, the output obtained is processed into a binary stream, 

which is then used for cryptographic key generation. Those keys are integrated into the AES encryption 

system. There exists a real-time interaction with the chaotic data and the encryption bleeps through a 

GUI which is MATLAB based. Simulations confirm the initial expectation that the ESN can model the 

chaotic behavior and provide fragmented keys while still satisfying the criteria for security and 

randomness. The approach developed here with regards to the proposal is to combine elements of chaos 

theory and fractional computation with machine learning for implementing advanced cryptographic 

systems. 

Key words: Chaos Theory, Random Number Generator, Echo State Networks, Cryptography, Machine 

Learning 

 

1. Introduction 

 

Chaos theory provides a groundwork for modeling nonlinear dynamical systems that exhibit 

sensitivity to initial conditions and long-term unpredictability. Introduced by Lorenz in 1963 [1] 

chaotic systems have been applied in diverse fields such as meteorology, biology, and engineering. 

Their inherent randomness has also made them suitable for cryptographic applications, particularly 

in secure key generation [2, 3]. Traditional pseudorandom number generators (PRNGs) are limited 

by their deterministic nature, whereas chaos-based random number generators (RNGs) provide 

higher unpredictability due to their nonlinear dynamics [4]. However, efficiently harnessing 

chaotic signals for encryption requires accurate numerical modeling and effective data processing 

strategies. In parallel, Echo State Networks (ESNs)—a form of reservoir computing—have shown 

strong performance in modeling time-dependent signals [5, 6]. With a fixed randomly connected 

reservoir and a trainable output layer, ESNs offer a computationally efficient alternative to 

conventional recurrent neural networks (RNNs). Further enhancing the modeling capacity, 

fractional calculus generalizes classical differential equations to non-integer orders, enabling the 

representation of systems with memory and hereditary properties [7-9]. The fractional-order 

Lorenz system introduces additional flexibility and has been shown to preserve chaotic behavior 

under appropriate conditions [10, 11]. 

In this study, we propose a novel framework that combines fractional-order chaos, ESNs, and 

chaos-based AES encryption. The fractional Lorenz system is numerically solved using the 
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Adams–Bashforth–Moulton method [9], and the resulting chaotic series is used to train an ESN. 

Predicted outputs are then utilized for secure key generation. A graphical user interface (GUI) is 

developed to demonstrate the integration of chaotic dynamics with real-time encryption. 

 

2. Materials and Method 

 

2.1. Echo State Networks 

Echo State Networks (ESNs) are a specialized class of recurrent neural networks (RNNs) that offer 

an efficient framework for processing temporal data, particularly in time series forecasting, speech 

recognition, and control systems. ESNs are distinguished by their use of a large, sparsely connected 

reservoir with fixed internal weights and a simple linear readout, enabling fast and efficient 

training. An ESN typically consists of three main layers [12-14]: 

 

• Input Layer: Projects the external inputs into the reservoir. 

• Reservoir Layer: A dynamic, high-dimensional, nonlinear system capturing the temporal 

features of the input. 

• Output Layer: Produces the final output through a trained linear transformation. 

The key theoretical elements of ESNs are the reservoir dynamics and the output computation, 

which are explained below. 

 

Reservoir Update Equation 

At each discrete time step 𝑡, the state of the reservoir 𝐱(𝑡) ∈ ℝ𝑁𝑟 is updated based on the current 

input 𝐮(𝑡) ∈ ℝ𝑁𝑢 and the previous reservoir state 𝐱(𝑡 − 1) as follows [6], [15-18]: 

𝐱(𝑡) = tanh(𝐖in𝐮(𝑡) + 𝐖𝐱(𝑡 − 1) + 𝐛) (1) 

where, 𝐖in ∈ ℝ𝑁𝑟×𝑁𝑢 is the input weight matrix, 𝐖 ∈ ℝ𝑁𝑟×𝑁𝑟 is the reservoir's internal weight 

matrix, 𝐛 ∈ ℝ𝑁𝑟 is a bias vector, tanh(⋅) is the element-wise hyperbolic tangent activation 

function, 𝑁𝑟 is the number of reservoir neurons and 𝑁𝑢 is the number of input features. The matrix 

𝐖 is typically initialized randomly and scaled to satisfy the spectral radius condition (i.e., the 

largest absolute eigenvalue 𝜌(𝐖) < 1 ) to ensure the echo state property. 

Output Computation 

The output 𝐲(𝑡) ∈ ℝ𝑁𝑦 at time 𝑡 is generated by a linear transformation of the reservoir states: 

𝐲(𝑡) = 𝐖out𝐳(𝑡) (2) 

where,𝐳(𝑡) = [𝐮(𝑡); 𝐱(𝑡)] is the concatenation of the input and reservoir state and 𝐖out ∈ 

ℝ𝑁𝑦×(𝑁𝑟+𝑁𝑢) is the output weight matrix, learned typically via linear regression. The optimization 

of 𝐖out is often done by minimizing the mean squared error (MSE) between the predicted and the 

target outputs over a set of training samples. 
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2.2. Fractional Calculus 

Fractional calculus extends classical calculus by allowing derivatives and integrals of arbitrary real 

or complex orders. The fractional derivative of a function 𝑓(𝑥), denoted by 𝐷𝛼𝑓(𝑥), generalizes 

the notion of differentiation for 𝛼 > 0 and integration for 𝛼 < 0. This framework provides a 

continuous spectrum of operators between integer orders, enabling more accurate modeling of 

systems with memory and hereditary effects. Much like real numbers interpolate between integers, 

fractional operators interpolate between integer-order differentials and integrals. Although 

computationally more demanding, the Adams–Bashforth–Moulton (ABM) method provides higher 

accuracy than the Grünwald–Letnikov approach for solving fractional-order oscillators [19] . As 

this study is simulation-based, the well-established predictor–corrector ABM algorithm was used. 

Accordingly, the fractional derivative in Equation (3) corresponds to the Volterra integral form in 

Equation 4), and the numerical scheme is derived as shown in Equations (6–8). 

 
𝐷𝑞𝑦(𝑡) = 𝑓(𝑦(𝑡), 𝑡), 𝑦(𝑘)(0) = 𝑦(𝑘), 𝑘 = 0,1, … , 𝑚 − 1 (3) 

𝑡 

 

𝑦(𝑡) = ∑[𝑞]−1 𝑦(𝑘) 𝑡𝑘 

+  
1 

0 

 𝑡 (𝑡 − 𝜏)𝑞−1𝑓(𝜏, 𝑦(𝜏))𝑑𝜏 (4) 
𝑘=0 0 𝑘! Γ(𝑞) 

∫
0 

 

𝑘 
𝑦ℎ(𝑡𝑛+1) = & ∑𝑚−1  𝑛+1 𝑦 

 
(𝑘) 

+ 
ℎ𝚐 𝑓 (𝑡𝑛+1, 𝑦𝑝 (𝑡𝑛+1)) + ℎ𝚐 

∑𝑛 𝑎𝑗,𝑛+1𝑓 (𝑡𝑗, 𝑦𝑛(𝑡𝑗)) (5) 
𝑘= 𝑘! 0 Γ(𝛼+2) ℎ 

 

Γ(𝛼+2) 𝑗=0 

 

𝑛𝑞+1 − (𝑛 − 𝑞)(𝑛 + 1)𝑞 if 𝑗 = 0 

𝑎𝑗,𝑛+1 = {(𝑛 − 𝑗 + 2)𝑞+1 + (𝑛 − 𝑗)𝑞+1 + 2(𝑛 − 𝑗 + 1)𝑞+1 if 1 ⩽ 𝑗 ⩽ 𝑛 
1 if 𝑗 = 𝑛 + 1 

 
(6) 

 

𝑦𝑝 
𝑘 

(𝑡𝑛+1) = ∑𝑚−1  𝑛+1 𝑦 
 
(𝑘) + 

1  ∑𝑛 
 

𝑏𝑗,𝑛+1𝑓 (𝑡𝑗, 𝑦𝑛(𝑡𝑗)) (7) 
ℎ 𝑘=0 𝑘! 0 Γ(𝑞) 𝑗=0 

 

𝑏𝑗,𝑛+1 
= 

ℎ𝚐 

((𝑛 + 1 − 𝑗)𝑞 − (𝑛 − 𝑗)𝑞) (8) 
𝑞 

 
2.3. Fractional Order Lorenz System 

In 1963, Edward Lorenz conducted studies on simplified equations describing convection cells that 

arise in atmospheric dynamics. Lorenz was the first to introduce the term "butterfly effect" in the 

context of chaos theory, referring to the sensitive dependence on initial conditions. The classical 

Lorenz chaotic system is defined by the following set of nonlinear differential equations [10], [20], 

21]: 
 

𝑑𝑥(𝑡) = 𝜎(𝑦(𝑡) − 𝑥(𝑡)) 
𝑑𝑡 

𝑑𝑦(𝑡) = 𝑥(𝑡)(𝜌 − 𝑧(𝑡)) − 𝑦(𝑡) 
𝑑𝑡 

𝑑𝑧(𝑡) = 𝑥(𝑡)𝑦(𝑡) − 𝛽𝑧(𝑡) 

 

 
(9) 

{ 𝑑𝑡 
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In this system, 𝜎 is referred to as the Prandtl number, and 𝜌 is the Rayleigh number. All parameters 

satisfy 𝜎, 𝜌, 𝛽 > 0, with commonly used values being 𝜎 = 10, 𝛽 = 
8
, and 𝜌 taken as a variable. 

3 

For 𝜌 = 28, the system exhibits chaotic behavior, while for other values, regular trajectories can 

be observed. The Lorenz system has three equilibrium points, one of which is clearly the origin, 

𝐸1 = (0,0,0). The other two equilibrium points are: 

𝐸2 = (√𝛽(𝜌 − 1), √𝛽(𝜌 − 1), 𝜌 − 1), 𝐸3 = (−√𝛽(𝜌 − 1), −√𝛽(𝜌 − 1), 𝜌 − 1) (10) 

The Jacobian matrix of the Lorenz system evaluated at an arbitrary equilibrium point 𝐸∗ = 

(𝑥∗, 𝑦∗, 𝑧∗) is given by: 

−𝜎 𝜎 0 
𝐽 = [𝜌 − 𝑧∗ −1 −𝑥∗] (11) 

𝑦∗ 𝑥∗ −𝛽 

With the standard parameter values (𝜎, 𝜌, 𝛽) = (10,28,8/3), the corresponding equilibrium 

points are approximately: 

𝐸1 = (0,0,0), 𝐸2 = (8.4853,8.4853,27), 𝐸3 = (−8.4853, −8.4853,27) (12) 

The fractional-order Lorenz system extends the classical model by incorporating derivatives of 

non-integer order, and is defined as: 

0𝐷𝑞1𝑥(𝑡) = 𝜎(𝑦(𝑡) − 𝑥(𝑡)) 

{ 0𝐷𝑞2𝑦(𝑡) = 𝑥(𝑡)(𝜌 − 𝑧(𝑡)) − 𝑦(𝑡) 
𝐷𝑞3𝑧(𝑡) = 𝑥(𝑡)𝑦(𝑡) − 𝛽𝑧(𝑡) 

(13) 

0  𝑡 

Here, 𝑞 , 𝑞 , 𝑞  ∈ (0,1] are the fractional orders of the derivatives, and 𝐷𝑞𝑖 denotes the Caputo 
1 2 3 0  𝑡 

fractional derivative of order 𝑞𝑖. 

3. Simulation Results 

In this study, the simulation of the fractional-order chaotic Lorenz system has been carried out. The 

system, composed of three fractional-order differential equations corresponding to its three state 

variables, was solved in the time domain using the predictor-corrector PECE (Predict-Evaluate- 

Correct-Evaluate) variant of the Adams-Bashforth-Moulton method. To verify the chaotic nature 

of the system, the Lyapunov exponents were computed. The presence of a positive Lyapunov 

exponent confirms the system's sensitivity to initial conditions, thus indicating chaotic behavior. 
The system parameters used in the simulation are, 8 . 

𝜎 = 10, 𝜌 = 28, 𝛽 = 
3 

, 𝑞1 = 𝑞2 = 𝑞3 = 0.995 

The initial conditions were chosen as: 𝑥(0) = 0.1, 𝑦(0) = 0.1, 𝑧(0) = 0.1. The simulation was 

conducted over a time interval of 100 seconds. Figure 2 presents the time evolution of the state 
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variable 𝑥 = 𝑥1(𝑡), Figure 3 illustrates the time response of the state variable 𝑦 = 𝑥2(𝑡) and Figure 

4 shows the time response of the state variable 𝑧 = 𝑥3(𝑡). These plots demonstrate the 

characteristic oscillatory and divergent behavior of the fractional-order Lorenz system, confirming 

the presence of chaos under the specified parameters. 

 

 

 

 

 

 
          

          

          

          

 

 

 

 

 

 

 

 

 
Figure 1. Time evolution of the state variable 𝑥 = 𝑥1(𝑡), 𝑦 = 𝑥2(𝑡) and 𝑧 = 𝑥3(𝑡) 

 

The chaotic nature of the system was verified by computing and plotting the Lyapunov exponents, 

as shown in Figure 5. As a fundamental tool of chaos theory, Lyapunov exponents are used to 

detect and quantify the presence of chaotic behavior in dynamical systems. They measure the rate 

at which nearby trajectories diverge (or converge) over time. Let the differential form of the 

investigated dynamical system be defined as, 𝑥𝑡+1 = 𝑓(𝑥𝑡). To understand how points in the phase 

space evolve, the Jacobian matrix is used. For a system of the form 𝑥𝑡+1 = 𝑓(𝑥𝑡), the Jacobian is 

defined as, 𝐽(𝑥) = 
𝛛𝑓

. At each point in time, the eigenvalues of the Jacobian matrix are computed. 
𝛛𝑥 

The magnitudes of these eigenvalues indicate how small perturbations in the system grow or decay 

over time. The Lyapunov exponents 𝜆𝑖 provide the average exponential rate of divergence (or 

convergence) of nearby trajectories and are calculated as, 𝜆 1 𝛿𝑥𝑖(𝑡) 
𝑖 

𝑡→∞ 𝑡 
 

𝛿𝑥𝑖(0) 
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Figure 2. Evolution of Lyapunov Exponents Figure 3. Phase-space trajectories showing the 

relationship among 𝑥1(𝑡), 𝑥2(𝑡) and 𝑥3(𝑡) 

 

 

 
Here, 𝛿𝑥𝑖(𝑡) denotes the magnitude of a small perturbation in the 𝑖-th state variable at time 𝑡. If 

the largest Lyapunov exponent (LLE) is positive, the system exhibits chaotic behavior. A positive 

LLE implies that initially close trajectories diverge exponentially over time, which is a hallmark 

of chaos. Conversely, if all Lyapunov exponents are negative, the system converges to a fixed point 

or a periodic orbit. As seen in Figure 5, the first Lyapunov exponent (LE1) is positive, confirming 

that the system behaves chaotically. In Figure 6, the projection of all three state variables onto one 

another is presented, illustrating the system's characteristic butterfly effect. 
 

The chaotic time series vector obtained from the simulation, X = [𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)], constitutes 

the dataset used in the Echo State Network (ESN) model. In this study, 𝑥1(𝑡) was designated as 

the input signal, while 𝑥2(𝑡) was used as the target output. A total of 20,000 data points were 

recorded over a simulation duration of 100 seconds. To implement reservoir computing, a reservoir 

composed of 30 internal units was constructed. The spectral radius was set to 0.5, and the 

connection sparsity was defined as 0.1. The hyperbolic tangent function (tanh) described in 

Equation (2) was used as the activation function. The model includes a single input and a single 

output unit. The 20,000 samples of 𝑥1(𝑡) were provided as input to the reservoir, while the 

corresponding 𝑥2(𝑡) values were used for training and testing. The dataset was divided equally, 

with 10,000 samples used for training and 10,000 for testing. From the test set, the first 100 samples 

were discarded to eliminate initialization transients, and analyses were conducted on the remaining 

9,900 samples. A visualization of the first four units of the constructed reservoir is presented in 

Figure 7. The reservoir states transmitted to the output layer were processed using linear regression. 

The output weights were updated by minimizing the error between the predicted and actual values. 

In this optimization process, the Normalized Root Mean Square Error (NRMSE) criterion was 

employed. The performance of the model was evaluated separately for the training and testing 
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phases. In Figure 8, the predicted values of the time series 𝑥2(𝑡) during training are shown in blue, 

while the actual values are depicted in red, revealing a strong correspondence. The testing phase 

results, shown in Figure 9, also demonstrate high agreement between the predicted and actual 

values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Structure of the first four units 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Predicted vs. actual values in the testing and training phase of 𝑥2(𝑡) 

The results obtained from both phases confirm the reliability and accuracy of the proposed reservoir 

computing model. It is anticipated that the ESN architecture can achieve similar success in other 
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datasets and application domains. Future studies incorporating larger datasets and alternative 

parameter configurations are expected to further enhance the generalizability and performance of 

the model. 

4. Chaotic Signal-Based Key Generation and AES Encryption 

In this study, the Advanced Encryption Standard (AES) algorithm is integrated with a chaotic key 

generation process to enhance the unpredictability and security of the encryption system. A chaotic 

signal is used as the entropy source for key generation, leveraging its inherent sensitivity to initial 

conditions and complex dynamic behavior. The complete process is described below. 

First, synthetically generated chaotic signal is normalized to the interval [0,1] to ensure a uniform 

dynamic range for thresholding. The normalization is performed as: 

 
𝑥(𝑡) − min(𝑥) 

𝑥norm(𝑡) = 
max(𝑥) − min(𝑥) 

(14) 

Next, a binary bitstream 𝑏(𝑡) is extracted from the normalized signal via thresholding. A global 

threshold value 𝜃 ∈ (0,1) is defined such that: 
 

𝑏(𝑡) =  1 if 𝑥norm(𝑡) > 𝜃 { 
0 otherwise 

(15) 

From this binary stream, a specified number of bits 𝑁 (typically 𝑁 = 128 for AES-128) are 

grouped into bytes to construct the encryption key. Each byte 𝑘𝑖 is formed from 8 successive bits 

using: 

 
7 

𝑘 = ∑ 𝑏 ⋅ 27−𝑗, for 𝑖 = 1,2, … , 
𝑁 

𝑖 8(𝑖−1)+𝑗+1 8 
𝑗=0 

(16) 

Once the key has been derived, the text is transformed into a byte format and padded using the 

PKCS#7 technique until it meets the required AES block size of 16 bytes. The padding value P can 

be defined as P = 16 - (length of plaintext mod 16). Subsequently, P bytes with a value of P are 

appended to the message. The AES algorithm is first applied in Electronic Codebook (ECB) mode, 

using the Java javax.crypto framework integrated with MATLAB. The final ciphertext is displayed 

in hex. Decryption, done with the same key, is executed after the original text is restored by 

removing the padding. It is evident that AES key, which depends on chaotic properties, highlights 

the fact that a highly sensitive system in terms of initial conditions and parameters is utilized. The 

dynamic AES key increases resistance to brute force and statistical attacks due to the disorderly 

and unpredictable behavior of chaos. 
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5. Graphical User Interface (GUI) Implementation 

In order to facilitate user interaction with the proposed chaotic key-based encryption system, a 

graphical user interface (GUI) was developed using MATLAB’s App Designer framework. The 

interface enables users to perform AES encryption and decryption operations by utilizing externally 

provided chaotic signals as the basis for dynamic key generation. The GUI includes the following 

main components: 

 

• A file selection button for uploading chaotic signal data from .mat or .txt files; 

• A text input area for entering the plaintext message to be encrypted; 

• Numeric input fields for threshold value and block size (in bits), both of which directly 

influence the bitstream extraction and key formation processes; 

• An encryption trigger button; 

• Read-only display fields for visualizing the hexadecimal representation of the encrypted 

message and the final decrypted output. 

 

 
Figure 4. MATLAB GUI of the proposed system [22] 

 

Upon execution, the uploaded chaotic signal is normalized and thresholded to produce a binary 

sequence. A specified number of bits (e.g., 128 for AES-128) are grouped and converted into bytes 

to form the encryption key. The plaintext is padded according to the PKCS#7 scheme to satisfy the 

block size requirements of the AES algorithm. Java's javax.crypto library is employed within 

MATLAB to perform AES encryption and decryption in ECB mode. This user-friendly and 

parameter-adjustable interface supports rapid experimentation and testing, and serves as an 
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educational tool for demonstrating the integration of chaotic systems with modern cryptographic 

frameworks. 

 

Conclusions 

In this paper, we present and analyze a novel approach of three-way fusion of fractional order 

chaotic systems, Echo State Networks (ESNs), and AES encryption within a cryptographic 

framework. Time series data was created using the Adams-Bashforth-Moulton method, and the 

fractional order Lorenz system was simulated to develop complex, yet light, memory time series 

data. Model estimation of these signals via ESN asserts that learning non-linear temporal sequences 

is indeed possible. The derived dynamic cryptographic keys from ESN simulated data can be 

utilized in AES encryption frameworks, yielding better results after the implementation of 

thresholding and normalization processes at this stage. The predictive accuracy of ESN simulations 

and the efficacy of the key generation process are confirmed through the simulation results. The 

MATLAB GUI facilitates interactive control over the operation and parameters of the encryption- 

decryption system, which allows for manually changing and monitoring system parameters in real- 

time during simulations. Results demonstrated the promise of integrating fractional dynamics with 

reservoir computing towards adaptable responsive cryptographic systems. Future studies could 

target hardware implementations using other fractional chaotic systems for non-system dependent 

use case scenarios. 
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