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Abstract     

 
Reinforcement Learning has emerged as a fundamental framework in artificial intelligence, enabling 

agents to optimize decision-making strategies through interaction with their environment. Among RL 

techniques, Temporal-Difference (TD) learning stands out due to its efficiency in updating value 

functions incrementally, combining the strengths of Monte Carlo methods and Dynamic Programming. 

This study focuses on analyzing and comparing the performance of TD(0), State Action Reward State 

Action (SARSA), and Expected SARSA algorithms in various reinforcement learning scenarios. By 

conducting experiments in dynamic environments such as the Sliding Block and Windy Gridworld 

problems, we evaluate the adaptability, stability, and efficiency of these TD-based methods. The results 

demonstrate that Expected SARSA exhibits superior stability and learning performance compared to 

SARSA and Q-learning, particularly in high-variance environments. Our findings provide valuable 

insights into the effectiveness of TD-based algorithms and contribute to the ongoing development of 

reinforcement learning strategies for complex decision-making tasks. 
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1. Introduction 

 

Reinforcement Learning (RL) has emerged as a fundamental paradigm in artificial intelligence, 

enabling agents to learn optimal decision-making strategies through interactions with their 

environment [1]. Unlike supervised learning, which relies on labeled datasets, RL enables learning 

through trial and error, where an agent receives feedback in the form of rewards and adjusts its 

actions accordingly. This approach has been widely applied in areas such as robotics, game playing, 

and autonomous systems [2-6]. 

 

Among RL techniques, Temporal-Difference (TD) learning has gained significant attention due to 

its ability to combine the strengths of Monte Carlo (MC) methods and Dynamic Programming 

(DP). Introduced by Sutton [7], TD learning estimates value functions incrementally by updating 

predictions based on observed rewards and future estimates rather than waiting for complete 

episodes. This key characteristic allows TD learning to be more data-efficient and adaptable to 

online learning scenarios, distinguishing it from MC methods, which require full episode 

completion before updating estimates [1]. 

 

The effectiveness of TD learning has been demonstrated in numerous applications. One of the most 

notable examples is TD-Gammon, an AI system developed by Tesauro [8] that utilized TD learning 

to achieve superhuman performance in backgammon. Moreover, theoretical studies have provided 



 

A. KALA et al./ ISITES2025 Diyarbakır – Türkiye    

 

2 

 

insights into the convergence properties of TD learning. Tsitsiklis and Van Roy [9] analyzed the 

stability of TD(0) with function approximation and established its convergence under specific 

stochastic conditions. Further empirical studies have shown that TD methods tend to generalize 

better than MC methods in RL problems [10-12]. 

 

In the control domain, TD learning serves as the foundation for various on-policy and off-policy 

RL algorithms. One of the most widely used on-policy methods is State Action Reward State 

Action (SARSA), introduced by Rummery and Niranjan (1994) [13]. SARSA learns action-value 

functions based on the current policy, making it suitable for dynamic and uncertain environments. 

However, one limitation of SARSA is its high variance in updates, which led to the development 

of Expected SARSA, a refined version proposed by van Seijen et al. [14]. Expected SARSA 

mitigates variance by computing the expected value of the next state-action pair, leading to 

smoother updates and improved stability. Empirical evaluations, such as the Cliff Walking 

problem, have shown that Expected SARSA converges faster and exhibits lower variance 

compared to standard SARSA [14]. The theoretical and empirical results from various studies 

support its efficacy, particularly when combined with extensions such as eligibility traces and 

hybrid control frameworks [15-19]. 

 

This study aims to analyze and compare the performance of TD(0), SARSA, and Expected SARSA 

in RL tasks. Specifically, it investigates the advantages of TD-based prediction methods over MC 

methods and evaluates the efficiency of SARSA and Expected SARSA in control tasks. By 

conducting experimental comparisons under varying learning conditions, this research provides 

insights into the effectiveness of TD-based algorithms in real-world RL scenarios. Furthermore, 

the study explores the impact of different hyperparameter settings, such as learning rates and 

exploration strategies, on the convergence and stability of these methods. 

 

 

2. Related Works 

 

RL has been a fundamental topic in artificial intelligence, with TD learning emerging as one of its 

most influential techniques [1]. TD learning integrates the sampling nature of MC methods with 

the bootstrapping capability of Dynamic Programming (DP), making it effective for both offline 

and online learning [2]. Unlike MC, TD updates value functions based on the next observed reward 

rather than waiting until an episode ends, leading to faster learning and adaptability [1]. 

 

The effectiveness of TD learning has been widely demonstrated. Tesauro [8] developed TD-

Gammon, a backgammon-playing AI, showcasing TD learning’s real-world potential. Theoretical 

properties of TD(0) were explored by Tsitsiklis & Van Roy [9], proving its convergence under 

stochastic conditions, while Szepesvári [10] experimentally showed that TD learning converges 

faster than MC methods. Comparisons between these methods were further investigated by Sutton 

[1], who found that TD learning exhibits greater stability in Random Walk problems, and by Doya 

[20], who explored its applicability in continuous-time RL. Additionally, Bertsekas [2] examined 

its role in optimal control problems, emphasizing its ability to generalize in dynamic environments. 

 

Several TD-based control algorithms have been introduced to enhance learning efficiency. 
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Rummery & Niranjan (1994) developed SARSA, an on-policy learning method successfully 

applied in environments requiring continuous adaptation, such as Windy Gridworld [13]. Later, 

van Seijen et al. [14] proposed Expected SARSA, which reduces variance by incorporating the 

expected value of all possible actions instead of a single sampled action, improving convergence 

speed in environments like Cliff Walking. Moreover, Silver et al. [13] examined TD learning in 

online planning, and Konda & Tsitsiklis [21] introduced Actor-Critic algorithms, integrating TD 

learning into policy optimization. 

 

This study builds on previous research by comparing TD(0) and MC methods, analyzing the 

performance of SARSA and Expected SARSA in various learning scenarios, and investigating how 

different hyperparameter settings impact TD-based methods. The findings aim to provide deeper 

insights into optimizing RL for dynamic and complex environments. 

 

 

3. Materials and Method 

 

3.1. Environment 

 

RL is a machine learning approach that enables an agent to interact with its environment and learn 

optimal decision-making strategies. In this study, Q-learning, SARSA, and Expected SARSA 

algorithms were employed to analyze agent performance under varying environmental conditions. 

The Sliding Block and Windy Gridworld environments were designed to evaluate the exploration-

exploitation trade-off and learning dynamics. During the training process, the ε-greedy exploration 

strategy was utilized to examine how agents balance exploration and exploitation, and the 

algorithms were compared under different learning rates (α). This framework provides a robust 

foundation for assessing the adaptability of RL algorithms to dynamic environments and analyzing 

their learning efficiency. 

 

3.2. SARSA (State Action Reward State Action) 

 

SARSA is an on-policy Temporal Difference (TD) learning method that enables agents to interact 

with their environment and learn optimal action strategies. While updating Q-values, it also 

considers future rewards. With the ε-greedy exploration strategy, the agent selects random actions 

with a certain probability for exploration while choosing the best-known actions for exploitation. 

Unlike off-policy methods such as Q-learning, SARSA updates based on the current policy, 

making it effective in dynamic environments with changing reward structures. Discounting future 

rewards and managing the exploration-exploitation balance are critical factors that enhance the 

efficiency of the algorithm. 
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The SARSA algorithm updates the Q-values using the Temporal Difference (TD) learning 

update: 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)]                                  
Where: 

• 𝑄(𝑠𝑡, 𝑎𝑡) → Q-value for state action pair (𝑠𝑡, 𝑎𝑡) 

• 𝛼 → Learning rate 

• 𝑟𝑡+1 → Reward received after taking action 𝑎𝑡 

• 𝛾 → Discount factor for future rewards 

• 𝑄(𝑠𝑡+1, 𝑎𝑡+1) → Q value of the next state action pair (𝑠𝑡+1, 𝑎𝑡+1) 

Since SARSA is an on-policy algorithm, the next action 𝑎𝑡+1 is selected based on the 

updated policy. 

(1) 

 

SARSA is typically used with the 𝜀-greedy exploration stategy, where the agent balances 

exploration and exploitation: 

𝑎 = {
𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎),   (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦: 1 − 𝜖) 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑒𝑠𝑡 𝑎𝑐𝑡𝑖𝑜𝑛

𝑅𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛, (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦: 𝜖)𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛
  

Where: 

• 𝜖 → Exploration rate 

• With probability 1 − 𝜖, theagent chooses the action with the highest known reward 

• With probability 𝜖, the agent selects a random action for exploration 

(2) 

 

SARSA accounts for future rewards by discounting then over time. This process is 

modeled by the discount factor (𝛾): 

       𝑉(𝑠) = ∑ 𝛾𝑡𝑟𝑡                                                                                                                   

∞

𝑡=0

 

Where: 

• 𝑉(𝑠) → Expected long term reward for state 𝑠 

• 𝛾 →Discount factor, controlling how much future rewards influence current 

decisions.  

•      - 𝛾 = 0 → Only immediate rewards matter. 

•      - 𝛾 ≈1→ Future rewards are given more importance 

(3) 

 

 

3.3. Expected SARSA 

 

Expected SARSA is an improved version of standard SARSA and an on-policy Temporal 

Difference (TD) learning method. Unlike traditional SARSA, it updates the Q-value by computing 

the expected value of the next action rather than using a single sampled action. This approach 
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enhances the exploration-exploitation balance by considering the expected reward of all possible 

actions and directly integrates the effect of the ε-greedy exploration strategy, resulting in smoother 

updates and a more stable learning process. The key advantage of Expected SARSA is that it 

stabilizes Q-value updates, making learning more efficient, especially in environments with high 

learning rates or dynamic reward structures. 

Instead of using the next selected action directly, Expected SARSA updates Q- values 

based on the expected value of the next action: 

𝑄(𝑠𝑡, 𝑎𝑡) ) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝔼𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)]                                              
Where: 

• 𝑄(𝑠𝑡, 𝑎𝑡) → Q-value for state action pair (𝑠𝑡, 𝑎𝑡) 

• 𝛼 → Learning rate 

• 𝑟𝑡+1 → Reward received after taking action 𝑎𝑡 

• 𝛾 → Discount factor for future rewards 

• 𝔼[𝑄(𝑠𝑡+1, 𝑎)] → Expected Q-values computed as the weighted average of all 

possible actions. 

(4) 

 

Expected SARSA does not use a single next action but instead calcultes the expected Q-

value under the 𝜀-greedy policy: 

𝔼[𝑄(𝑠𝑡+1, 𝑎)] = (1 − 𝜖)𝑄(𝑠𝑡+1, 𝑎∗) + 𝜖 ∑
𝑄(𝑠𝑡+1,𝑎)

|𝐴|𝑎                                                            

Where: 

• 𝑎∗ → Besy known action (𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎)) 

• 𝜖 → Exploration rate 

• |𝐴| → Total number of actions  

• (1 − 𝜖) → Probability of selecting the best known action 

• 𝜖 ∑
𝑄(𝑠𝑡+1,𝑎)

|𝐴|𝑎 → Average Q-value of randomly selected actions 

(5) 

 

Expected SARSA follows the 𝜀-greedy strategy for exploration and exploitation: 

𝑎 = {
𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎),   (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦: 1 − 𝜖)  (𝑒𝑥𝑝𝑙𝑜𝑡𝑎𝑡𝑖𝑜𝑛)

𝑅𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛,   (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦: 𝜖)    (𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛)      
                              

This approach allows the agent to primarily select the best known action while 

occasionally exploring alternatives to improve long-term learning. 

(6) 

 

3.4. Q-Learning 

 

Q-learning is an off-policy TD learning algorithm and one of the most widely used methods in RL. 

Unlike on-policy methods like SARSA, it learns by considering the highest possible future reward 

rather than following the current policy. The agent updates Q-values based on the best future 
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reward, regardless of the next action taken, allowing it to learn the optimal long-term strategy. Due 

to its off-policy nature, it enables more extensive exploration and faster learning, but high 

exploration rates (ε) can lead to instability in the learning process. 

Q learning updates Q-values based on the maximum future reward: 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)]                                           

Where: 

• (𝑄(𝑠𝑡, 𝑎𝑡) → Q-value fort he state-action pair (𝑠𝑡, 𝑎𝑡) 

• 𝛼 → Learning rate  

• 𝑟𝑡+1 → Reward received after taking action 𝑎𝑡 

• 𝛾 → Discount factor for future rewards 

• 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) → Maximum Q-value of the next state 

Since Q-learning selects the best possible action (maxQ) in the update step, it is considered 

an off-policy method.  

(7) 

 

Q-learning follows the 𝜖-greedy strategy to balance exploration and exploitation: 

𝑎 = {
𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎),   (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦: 1 − 𝜖)  (𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛)

𝑅𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛,   (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦: 𝜖)    (𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛)          
                                    

Where: 

• 1-𝜖 → Probability of selecting the best-know action 

• 𝜖 → Probability of taking a random action for exploration 

Since Q-learning learns by selectingthe best possible action rather than following a fixed 

policy, it accelerates the learning process but may lead to instability in highly dynamic 

environments. 

(8) 

 

 Future rewards are modeled using the discount factor (𝛾): 

      𝑉(𝑠) = ∑ 𝛾𝑡𝑟𝑡
∞
𝑡=0                                                                                                                  

Where: 

• 𝑉(𝑠) → Expected long-term reward for state 𝑠 

• 𝛾 → Discount factor 

- 𝛾 = 0 → Only immadiate rewards matter 

-𝛾 ≈ 1 → Future rewards are given more importance. 

(9) 

 

4. Result and Finding 

 

This section presents the results of experiments with Q-learning, SARSA, and Expected SARSA, 

evaluating learning efficiency and performance stability.The results are structured into an overview 

of learning performance, graphical analysis, and a discussion of key findings. 
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Figure 1. Interim and Asymptotic Performance of TD Methods 

This study analyzes the performance of Q-learning, SARSA, and Expected SARSA in solving the 

sliding block problem. The goal is to determine the optimal learning rate (α) that enables the 

block to reach its target efficiently. Figure 1 compares the reward performance of these algorithms 

under different learning rates (α). The interim performance is measured as the average reward 

over the first 100 episodes, while the asymptotic performance is based on the average reward 

over 100,000 episodes. Expected SARSA (red dashed line) achieved the highest reward at α ≈ 

0.6, while SARSA (blue line) performed best at α ≈ 0.7 but showed fluctuations at higher α values. 

Q-learning (black dashed line) improved as α increased but experienced a significant decline 

beyond α > 0.6. 

 

Figure 2. Windy Gridworld 
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The Windy Gridworld problem is a RL task where an agent must navigate from a start position 

(green) to a goal (red) while dealing with wind forces that push it upward in certain columns. Unlike 

standard gridworld environments, the wind alters movement, requiring the agent to learn an 

efficient path despite these disturbances. The training was conducted using the SARSA algorithm, 

with parameters α = 0.5, ϵ = 0.1, and initial Q-values set to zero. Over 200 episodes and 8,500 

steps, the agent gradually improved its policy, initially moving randomly but eventually learning 

the optimal actions. Figure 2 visualizes the learned policy, where arrows indicate the best action 

in each state, and numbers in the top-right corners represent wind strength. The results show that 

the agent successfully adapts to the wind’s influence, finding the shortest and most efficient path 

to the goal. 

 

Figure 3. Learning Curve-Windy Gridworld(SARSA) 

Figure 3 illustrates the agent's learning process over time, showing how episode lengths vary as 

the agent gains experience. The x-axis represents time steps, while the y-axis indicates the number 

of episodes completed. Initially, since the agent moves randomly, episodes take longer to finish. 

However, as the agent learns from its interactions, it discovers more efficient paths, leading to 

shorter episode durations. The increasing steepness of the curve highlights the improvement in 

learning efficiency. After 8,500 time steps, the agent successfully learns the optimal policy, 

completing episodes in significantly fewer steps, demonstrating the effectiveness of the SARSA 

algorithm in optimizing movement within the Windy Gridworld environment. 

Overall, the results demonstrate that SARSA successfully learns the optimal policy in the Windy 

Gridworld environment, allowing the agent to adapt to wind conditions and move more efficiently 

over time. Figure 3 illustrates that as the learning process progresses, the agent reaches the goal in 

fewer steps, indicating an accelerated exploration phase. Figure 2 confirms that the agent 

effectively adopts the optimal movements, while Figure 1 provides a comparative analysis of the 

algorithms. Although SARSA exhibits some fluctuations at higher learning rates, it generally 

performs well. However, Expected SARSA remains the most stable and efficient learning 

algorithm, making it the most reliable choice for scenarios requiring long-term adaptation. 
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Conclusions 

 

This study evaluated the performance of Q-learning, SARSA, and Expected SARSA in RL tasks, 

focusing on their adaptability and stability. The results showed that Expected SARSA provided the 

most stable learning performance, making it the best choice for long-term adaptation, while 

SARSA effectively learned the optimal policy in Windy Gridworld despite fluctuations at higher 

learning rates. Future research can explore adaptive exploration strategies and deep RL methods to 

enhance learning efficiency and stability. Additionally, investigating how these algorithms perform 

in more complex, dynamic environments could further improve their real-world applicability. 
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