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Abstract  

 

This study introduces an analytical solution method which is called the differential transform method (DTM) to analyze 

the free vibration response of a beam which features material coupling between flapwise bending and torsional 

vibrations. The governing differential equations of motion are solved by applying DTM. The natural frequencies are 

obtained and compared with a study taken form the literature. A good agreement is found between the results of this 

study and the results of the study taken from the literature. 
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1. Introduction 

 

The free vibration analysis of a bending-torsion coupled beam is increasingly being investigated in 

several engineering applications including rotating and non-rotating machinery, aerospace 

structures, windmills, etc. The dynamic characteristics, i.e., natural frequencies and related mode 

shapes obtained in the free vibration analysis, of these structures is used in the design and 

performance evaluation in engineering applications because they are required to determine 

resonant responses and to perform forced vibration analysis.  

 

Solving the extended aeroelasticity problem, which often arises in aviation, requires explicit choice 

of the structural model for the aircraft. As a first approximation [1], the fuselage, wing, and both 

the horizontal and vertical stabilizers in the empennage are modeled as beams clamped at the origin 

of the respective body axes and undergoing bending and torsion. For this reason, the effect of 

coupling between the bending and torsional vibrations, which can occur in both solid and thin-

walled beams, is of particular interest from an aeroelastic standpoint [2]. Eslimy-Isfahany, Banerjee 

and Sobey [3] analysed free and forced vibration of bending-torsion coupled beam with Euler-

Bernoulli beam theory for deterministic and random loads using modal analysis. Hashemi and 

Richard [4] worked on the study of the bending and torsion vibration response of the axially loaded 

beam by using dynamic finite element method in order to obtain natural frequencies and related 

mode shapes for uncoupled and coupled beam, separately. Surace [5] used a new approximate 

method, based on the use of Green functions, for the analysis of the modal characteristics of non-
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uniform blades corresponding to the coupled flapwise bending, chordwise bending and torsion of 

both rotating and non-rotating blades. Liu and Shu [6] used a method, called as a closed form 

solution, to solve analytically frequencies and corresponding mode shapes of coupled bending-

torsion vibration model with single delamination subjected to axial loads and static end moments. 

Oh and Yoo [7] examined the coupling effects between stretching, bending, and torsion of a 

rotating pre-twisted blade using a complex modal analysis method. These studies have shown [3-

7] that compared with numerical methods, analytical methods are more preferred to solve vibration 

problem in order to obtain the behavior of coupled bending-torsion beams. 

 

One of the analytical methods for the solution of differential equations occurred in the engineering 

applications is the differential transform method (DTM). The concept of this method was first 

introduced by Zhou [8] in 1986 and used for a study regarding with electrical circuits. Based on an 

analytical approach, the DTM has an ability to solve linear and nonlinear equations [9], ordinary 

[10] and partial [11] differential equations, integro-differential [12] and fractional differential [13] 

equations. One of the first researchers who used DTM, Hassan [14] investigated the solution of 

Sturm-Liouville eigenvalue problem using DTM and compared the results with analytical results 

that were obtained by other methods. Ho and Chen [15] utilized the same method for analysis of 

general elastically end restrained non-uniform beams. As the method became popular, it has been 

recently become a useful and practical solution technique to apply it in the vibration analysis of 

uniform or non-uniform beams [16] and plates [17]. Since, in the studies [8-17], it has been shown 

that the DTM is an efficient tool to solve differential equations with an analytical point of view, it 

has still gained much attention of several researchers in the structural engineering problems. 

 

In this study, vibration analysis of Euler-Bernoulli type beam with bending-torsion coupling is 

performed using the differential transform method (DTM). The first six natural frequencies of the 

beam are found and the results are compared with an illustrative example taken from the literature. 

 

2. Formulation and Method  

 

2.1. Fomulation 

The governing partial differential equation of motion is derived for the out-of-plane free 

vibration of a tapered cantilever Euler-Bernoulli type bending-torsion coupled beam as an 

aircarft wing, as shown in Fig 1(a). The allowable displacements consists of a flexural translation 

𝒖(𝒙, 𝒕) in the 𝒛 −direction and a torsional rotation 𝝍(𝒙, 𝒕) about the 𝒙 −axis; where 𝒙 and 𝒕 

denote the distance from origin and time, respectively. The cross-sectional loads are represented 

by a force per unit length 𝒇(𝒙, 𝒕) acting parallel to 𝒛 −axis and applied through the shear center, 

together with a torque per unit length 𝒈(𝒙, 𝒕) about 𝒙 −axis as shown in Fig 1(b). 
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Fig 1. The coordinate system and notation for coupled bending-torsional vibration of a beam, (b) 

The distributions of bending and torsional loads [3]. 

According to the Euler - Bernoulli beam theory, the governing differential equation of motion for 

the out-of-plane coupled bending and torsion motion is as follows 

𝐸𝐼
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= 𝑔(𝑥, 𝑡)                                                   (2) 

where 𝐸𝐼 and 𝐺𝐽 are, respectively, the bending and torsional rigidity, 𝑚 is the mass per unit length 

and 𝐼𝛼 is the mass moment of inertia per unit length about the 𝑥 − 𝑎𝑥𝑖𝑠 of the beam. The coeeficints 

𝑐1 and 𝑐2 are viscous damping terms per unit length in flexure and torsion, respectively. 

The boundary conditions for a cantilever Euler – Bernoulli beam with coupled bending – torsion 

motion can be expressed as follows 

𝑢(𝑥, 𝑡) =
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
= 0,                  𝑎𝑡    𝑥 = 0                                                                                      (3𝑎) 

𝜓(𝑥, 𝑡) = 0,                                   𝑎𝑡   𝑥 = 0                                                                                          (3𝑏) 

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
=

𝜕3𝑢(𝑥, 𝑡)

𝜕𝑥3
= 0,          𝑎𝑡 𝑥 = 𝐿                                                                                        (3𝑐) 

𝜕𝜓(𝑥, 𝑡)

𝜕𝑥
= 0,                                  𝑎𝑡  𝑥 = 𝐿                                                                                        (3𝑑) 

 

2.2. Method  

The Differential Transform Method (DTM) is a transformation technique based on a power series 

expansion and it is an analytical method to obtain analytical solutions of the differential equations. 

In this method, certain transformation rules are applied and the governing differential equations 

and boundary conditions of the system are transformed into a set of algebraic equations in terms of 
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the differential transforms of the original functions and the solution of these algebraic equations 

gives the desired solution of the problem with great accuracy. 

Consider a function 𝒇(𝒙) which is analytic in a domain 𝑫 and let 𝒙 = 𝒙𝟎 represent any point in 𝑫. 
The function 𝒇(𝒙) is then represented by a power series whose center is located at 𝒙𝟎. The 

differential transform of the function 𝒇(𝒙) is given by 

𝑭[𝒌] =
𝟏

𝒌!
(

𝒅𝒌𝒇(𝒙)

𝒅𝒙𝒌
)

𝒙=𝒙𝟎

                                                                                                                           (𝟒) 

where 𝒇(𝒙) is the original function and 𝑭[𝒌] is the transformed function.  

The inverse transformation is defined as 

𝒇(𝒙) = ∑(𝒙 − 𝒙𝟎)𝒌𝑭[𝒌]

∞

𝒌=𝟎

.                                                                                                                                (𝟓) 

The theorems that are frequently used in the transformation of the differential equations and 

the boundary conditions are introduced in Table1. 

 

Original function                  Transformed Functions 

𝒇(𝒔) = 𝒈(𝒔) ± 𝒉(𝒔) 𝐹𝐷{𝑘} = 𝐺𝐷{𝑘} ± 𝐻𝐷{𝑘} 

𝒇(𝒔) = 𝜶 𝒈(𝒔)        (𝜶 ∈ ℝ) 𝐹𝐷{𝑘} = 𝛼𝐺𝐷{𝑘}     (𝛼 ∈ ℝ) 

𝒇(𝒔) =
𝒅𝒎𝒈(𝒔)

𝒅𝒔𝒎
 

𝐹𝐷{𝑘} = (𝑘 + 1)(𝑘 + 2) + ⋯ + (𝑘 + 𝑚)𝐺𝐷{𝑘 + 𝑚} 

𝒇(𝒔) = 𝒆𝒙𝒑(𝜶𝒔)      (𝜶 ∈ ℝ) 
𝐹𝐷{𝑘} =

𝛼𝑘

𝑘!
        (𝛼 ∈ ℝ) 

𝒇(𝒔) = 𝒔𝒎 
𝐹𝐷{𝑘} = 𝛿(𝑘 − 𝑚) = {

1,     𝑖𝑓  𝑘 = 𝑚
0,     𝑖𝑓 𝑘 ≠ 𝑚

 

𝒇(𝒔) = 𝒈(𝒔)𝒉(𝒔) 𝐹𝐷{𝑘} = ∑ 𝐺𝐷{𝑙}

𝑘

𝑙=0

𝐻𝐷{𝑘 − 𝑙} 

 

Table 1. DTM theorems for DTM. 

 

By applying the rules defined in Table 1 and Table 2 to Eq(1) and Eq(2) for the undamped free 

vibration analysis, i.e. when 𝒇(𝒙, 𝒕) = 𝒈(𝒙, 𝒕) =  𝒄𝟏 = 𝒄𝟐 = 𝟎,  the following analytical 

expressions are obtained. 
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𝑼[𝒌 + 𝟒] =
𝒂𝑼[𝒌] − 𝒄𝚿[𝒌]

(𝒌 + 𝟏)(𝒌 + 𝟐)(𝒌 + 𝟑)(𝒌 + 𝟒)
                                                                                       (𝟔) 

𝚿[𝒌 + 𝟐] =
𝒅𝑼[𝒌] − 𝒃𝚿[𝒌]

(𝒌 + 𝟏)(𝒌 + 𝟐)
                                                                                                                   (𝟕) 

with boundary conditions 

𝑼[𝟎] = 𝑼[𝟏] = 𝚿[𝟎] = 𝟎                                                𝒂𝒕   𝝃 = 𝟎                                                       (𝟖) 

∑ 𝒌(𝒌 − 𝟏)𝑼[𝒌] = 𝟎,

∞

𝒌=𝟎

   ∑ 𝒌(𝒌 − 𝟏)(𝒌 − 𝟐)𝑼[𝒌] = 𝟎,

∞

𝒌=𝟎

 ∑ 𝒌𝚿[𝒌] = 𝟎,

∞

𝒌=𝟎

   𝒂𝒕  𝝃 = 𝟏.             (𝟗) 

3. Results  

A typical cantilever aircarft wing, in which flexural and torsional motions are coupled, is defined 

by the following data [4]: (i) bending rigidity (𝐸𝐼) = 9.75 × 106𝑁𝑚2; (ii) torsional rigidity 

(𝐺𝐽) = 9.88 × 105𝑁𝑚2 ; (iii) mass per unit length (𝑚) = 35.75 𝑘𝑔/𝑚; (iv) mass moment of 

inertia per unit length (𝐼𝛼) = 8.65 𝑘𝑔𝑚; (v) distance between mass center and shear center (𝑥𝛼) =
0.18 𝑚; (vi) length of the wing (𝐿) = 6 𝑚. 
 

The results of the natural frequencies of the coupled bending-torsion beam are shown in Table 2. 

 
Natural freq. 

(rad/sec) 
DTM Ref. [4] Error (%) 

𝜔1 49.61 49.62 0.01 

𝜔2 97.04 97.05 0.01 

𝜔3 248.87 249.00 0.13 

𝜔4 355.59 357.54 1.95 

𝜔5 451.45 452.57 1.12 

𝜔6 610.32 610.63 1.31 

 

Table 2. Natural frequencies of the beam for coupled and uncoupled, separately, bending-torsion 

behaviour.  
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Fig. 2. Convergence of the first six natural frequencies of the typical cantilever aircraft wing. 

 

Regarding with the convergence of the first six natural frequencies, Fig. 2 shows the number of terms 

included in DTM versus natural frequencies. In this figure, it is seen that in order to evaluate up to sixth 

natural frequency with two-digit precision, it is necessary to include 30 terms. Additionally, it should be 

noted that higher modes appear when more terms are taken into account in DTM application. 

In Fig. 3, the mode shapes of the wing are given. Fig. 3 reveals that all normal modes are 

the coupled modes; however, in the second normal mode bending motion is very little when it is 

compared with the torsion motion, especially towards the wing tip.  

 

 



 

A. SOYSAL et al./ ISITES2022 Bursa - Turkey    

 

 

 

 

 
Fig 3. The normal mode shapes of the cantilever aircraft wing with bending-torsion coupling. 

 

Conclusions  

 

In this study, free vibration analysis of Euler-Bernoulli type beam with bending-torsion coupling 

and uncoupling, respectively, is performed using an analytical method, called the differential 

transform method (DTM). The first six natural frequencies have been found and the results have 

been compared with the results of Ref. [4]; an agreement with fairly good accuracy is found 

between the studies. Furthermore, in order to obtain the first six natural frequencies with the 

minimum errors, it is necessary to include the first 30 terms in DTM. Beside these, the mode shapes 

of the wing are obtained and interpreted in trems of coupling behavior. 
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