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Abstract 

 
Virial and energy dissipation, related to oscillation observable responses, possess complementary 

information regarding acoustic force measurements. In this paper, we introduce a mathematical 

framework describing the analytic relationship between oscillation observables and energy quantities at 

the second eigenmode in the measurement of dynamic acoustic forces. We utilize a bimodal-frequency 

excitation scheme for actuation of the micro-cantilever array to obtain high-sensitivity frequency bands. 

Herein, we analyze the virials of acoustic force interaction and the energy dissipation levels on the 

domain of acoustic force frequency. For our case, we obtain the high-frequency bands of around 200-

270 kHz and 440-570 kHz for the force strengths in the range of 4.0-36.0 pN. In addition, results of 

virials and dissipated power with respect to acoustic force strengths are introduced for low- and high-

sensitivity frequency regions. Therefore, the energy quantities can be robustly utilized to determine high-

sensitivity frequency windows in the measurement of dynamic acoustic forces.   
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1. Introduction  

 

Acoustic emissions are detected precisely by the transducers, manufactured using Micro-Electro-

Mechanical Systems (MEMS) technologies. The conditions of structures such as gas pipes and 

storage tanks under dynamic loads are identified by characterizing acoustic signals [1]. In addition, 

failure mechanisms of different materials generate elastic acoustic waves with various amplitudes 

and frequencies. For instance, acoustic emissions at the frequencies in the range of 90-310 kHz are 

emitted owing to the matrix cracking, debonding, and pull-out of carbon/epoxy material [2]. Thus, 

needs for characterization of acoustic signals based on frequency bands leads to in-depth 

investigations on high-sensitivity measurement techniques. Accordingly, fluctuations in energy 

dissipation observed in the measurement of acoustic emissions can be used to determine high-

sensitivity frequency windows.      

           

In AFM operations, energy dissipation processes owing to tip-sample interaction force are 

described using virials and dissipated power at eigenmodes of micro-cantilevers. In tapping-mode 

scanning force microscopy, phase shift is related to energy dissipation for low-quality factors using 

analytical expressions [3]. In another work, a theory of phase contrast is presented in consideration 

of energy dissipation in multi-frequency AFM [4]. Besides, dissipated energy on the sample surface 

https://doi.org/10.33793/acperpro.04.01.50


 

C. YİLMAZ et al./ ISITES2021 Sakarya - Turkey    

 

333 

 

is determined as a function of amplitude in amplitude modulation AFM [5]. In this current work, 

variations in virials and power dissipation at higher mode with respect to acoustic force strength 

and frequency are explored for the measurement of dynamic acoustic forces.  

 

Sensitivities to tip-sample interaction forces are explored in the several works dealing with 

responses of the AFM micro-cantilevers under multi-frequency excitations [6-9]. Multimodal 

operations can also be used to enhance the sensitivities of oscillation observables to acoustic forces. 

Accordingly, it is remarked in our earlier work that phase sensitivity to static acoustic force at first 

eigenmode is improved by applying driving forces under a bimodal-frequency excitation scheme 

[10]. In this current work, the micro-cantilever array is driven under bimodal-frequency excitation 

to increase the width of the high-sensitivity frequency band in the measurement of dynamic 

acoustic forces. In the following works, micro-cantilever array based acoustic transducers are used 

to detect acoustic emissions within diverse frequency bands. Acoustic emissions are measured by 

utilizing micro-cantilevers with different resonant frequencies in consideration of air damping [11]. 

In another work, a multi-channel piezoelectric acoustic transducer based on a bimorph micro-

cantilever array is developed to operate in a viscous fluid environment [12]. Moreover, signal 

processing functions of basilar membranes in the audible frequency band are imitated using 

piezoelectric micro-cantilevers [13].          

 

In our earlier work, sensitivities of oscillation observables and energy quantities at the first two 

eigenmodes to static acoustic forces were investigated for single- and bimodal-frequency excitation 

schemes [10]. In this study, the micro-cantilever array is excited using a bimodal operation scheme 

to achieve high sensitivities to dynamic acoustic forces. Deflections at second eigenmode are 

determined numerically and energy quantities are calculated analytically, utilizing amplitude and 

phase shifts. Results of dissipated power and virial as a function of acoustic force frequency are 

introduced for diverse force strengths. Moreover, variations in virial and dissipated power with 

respect to acoustic force strength are analyzed for low- and high-sensitivity frequency regions. 

Therefore, the results of the energy quantities are evaluated in the light of virial theorem and energy 

conservation principle.  

 

 

2. Mathematical Framework 

 

The bimodal-frequency excitation model, the energy quantities and the details of numerical 

computation are introduced and described in this section. 

  

2.1. Bimodal-frequency excitation model  

 

We determine the deflections of the micro-cantilevers undergoing dynamic acoustic forces by 

solving the Equation Of Motion (EOM) (Eq. (1)) numerically.  

 

𝑚𝑒�̈�2(𝑡) = −𝑘2𝑧2(𝑡) −
𝑚𝑒𝜔2

𝑄2
�̇�2(𝑡) + 𝐹𝑒𝑥𝑐,1 + 𝐹𝑒𝑥𝑐,2 + 𝐹𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐                                                                   (1) 
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In the bimodal operation scheme, the micro-cantilevers are driven with the external excitation 

forces at the first and second eigenmode frequencies [10]. In the forced oscillator harmonic model, 

a micro-cantilever in the array is regarded as a point-mass model. In Eq. (1), 𝑧2, 𝑘2, 𝜔2, and 𝑄2 are 

the instantaneous deflection, the stiffness, the angular resonance frequency and the quality factor 

for the second eigenmode respectively. Micro-cantilever deflections under the damping effect of 

the air as an operation environment are represented by the quality factor [11].  𝐹𝑒𝑥𝑐,1 and 𝐹𝑒𝑥𝑐,2 are 

the external excitation forces with the force strengths  𝐹1 and 𝐹2 at the first (𝜔1=2π𝑓1) and the second 

(𝜔2=2π𝑓2) angular resonance frequencies respectively (Eq. (2, 3)). 

𝐹𝑒𝑥𝑐,1 = 𝐹1 cos(𝜔1𝑡)                                                                                                                                                   (2)  

𝐹𝑒𝑥𝑐,2 = 𝐹2 cos(𝜔2𝑡)                                                                                                                                                   (3) 

Driving the micro-cantilevers at resonance frequencies under bimodal-frequency excitation, we 

obtain oscillations of the resonant micro-cantilevers. Dynamic acoustic force 𝐹𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐 is modeled 

as a cosine signal with the force strength 𝐹𝐴𝑐 at angular frequency (𝜔𝐴𝑐=2π𝑓𝐴𝑐) as introduced below.  

 
𝐹𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐 = 𝐹𝐴𝑐 cos (𝜔𝐴𝑐𝑡)                                                                                                                                         (4)  
 

Deflections of the resonant micro-cantilevers under acoustic forces at different frequencies 𝑓𝐴𝑐 are 

determined for the second eigenmode. A micro-cantilever deflection is approximated as follows 

[14]. 

 
𝑧2(𝑡) ≈ 𝐴2 cos(𝜔2𝑡 − ∅2) + 𝐻(𝜖)                                                                                                                           (5) 

 

In Eq. (5), 𝐴2 is the amplitude, and ∅2 is the phase shift at the second eigenmode with respect to 

free oscillation in the absence of acoustic force. 𝐻(𝜖) term represents contributions of acoustic 

force frequencies and higher eigenmodes. Influences of dynamic acoustic forces on the periods of 

free oscillations are ignored due to resonant oscillations of the micro-cantilevers. 

 

 

2.2. Virial and dissipated power  

 

Energy dissipation occurring in the measurement of dynamic acoustic forces can be described using 

the energy quantities such as virial and dissipated power. Observables of free oscillations of the 

micro-cantilevers vary considerably due to interaction with acoustic forces. The analytical 

expressions of virial and dissipated power for the eigenmode i are introduced for acoustic force 

measurement in our earlier work [10]. For this case, i is equal to 2 since we determine the results 

of the energy quantities for the second eigenmode. The energy storage process, occurring in the 

presence of external excitation force and acoustic force, is represented by virial term, whose 

expression is introduced as follows. 

 

𝑉2 = −
1

2
𝐹2𝐴2 cos(∅2)                                                                                                                                (6) 
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Mechanical energy supplied by external excitation force is lost due to the dissipative interaction 

with the operation environment and acoustic forces. Based on virial theorem and energy 

conservation principle, the analytical expression of dissipated power for the second eigenmode is 

given below [3, 10].  

 

𝑃2 = −
1

2
𝐹2𝐴2𝜔2 𝑠𝑖𝑛(∅2) −  

1

2𝑄2
𝜔2(𝐴2)2𝑘2                                                                                         (7) 

 

Dissipated power term is used to describe energy dissipation, considering different periods of 

oscillations [15].   

 

 

2.3. Numerical simulation  

 

Instantaneous deflections at the second eigenmode are obtained by solving the EOM (Eq. (1)) 

numerically using the Fourth order Runge-Kutta method. Coefficients of the EOM and dimensional 

parameters of three AFM micro-cantilevers in the array are introduced in Table 1 as in [16].  

 

 
Table 1. Specification of micro-cantilever array  

 

Micro-cantilever l(µm) w(µm) t(µm) k1(N/m) k2(N/m) Q1 Q2 f1(kHz) f2(kHz) 

Bruker (M1) 450 40 6.5 3.5 137 240 365 45.1 279.9 

Olympus (M2) 240 40 2.3 2.9 106.8 147 289 68.8 403.1 

BudgetSensors (M3) 225 28 3.0 3.2 118.7 215 325 75.2 475.1 

 

 

The mass densities 𝜌 of the micro-cantilevers, which are made of silicon material, are equal to 2320 
𝑘𝑔

𝑚3. The effective masses 𝑚𝑒 of the micro-cantilevers are calculated using the expression given 

below [17]. 

 

𝑚𝑒 =
33

140
𝑙𝑤𝑡𝜌                                                                                                                                                              (8) 

Dynamic acoustic forces are considered to act on the one-side surfaces of the micro-cantilevers 

[10, 18]. Effective strengths of acoustic forces are determined using Sound Pressure Levels (SPLs) 

in the range of 30-75 dB [19]. Frequencies of the acoustic forces are generated in the range of 100-

800 kHz with a step of 5 kHz in numerical simulation. Magnitudes of the external excitation forces 

at the first eigenmode for the micro-cantilever M1, M2, and M3 are set to 145.8, 197.3 and 148.8 

pN respectively. Magnitudes of the external excitation forces at the second eigenmode for the 

micro-cantilever M1, M2, and M3 are set to 375.3, 369.6 and 365.2 pN respectively. The total time 

interval of the numerical simulation is between 19.12 and 19.20 ms. Initial deflections and 

velocities are set to zero and applied to solve the EOM (Eq. (1)) in Matlab.  
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3. Results of energy quantities  

 

The acoustic force frequency bands, in which high fluctuations in virials and dissipated powers are 

observed, are identified for diverse force strengths calculated considering the SPL of 30 dB (Fig.  

1). For the micro-cantilever M1, the high-sensitivity frequency range of around 200-270 kHz is 

determined for the force strengths in the range of 11.4-36.0 pN (Fig. 1(a, b)). The high-sensitivity 

frequency range of around 440-505 kHz is obtained for the micro-cantilever M2 as the force 

strength varies in the range of 6.1-19.2 pN (Fig. 1(c, d)). For the micro-cantilever M3, the frequency 

range with high sensitivity of around 505-570 kHz is acquired for the force strengths in the range 

of 4.0-12.6 pN (Fig. 1(e, f)). Herein, we would like to remark that high-sensitivity frequency ranges 

are obtained near the second eigenmode frequencies of the micro-cantilevers. Fluctuations in virials 

between positive and negative values are evident irrespective of force strengths for the micro-

cantilever M1 (Fig. 1(a)). The positive value of virial points out the existence of energy storing 

process of the resonant micro-cantilever in the presence of acoustic forces [10]. In addition, 

fluctuations among negative values of virials are observed in high-sensitivity frequency bands as 

it is illustrated in Fig. 1(c, e). Mechanically oscillating system losses energy owing to the acoustic 

forces, indicated by positive values of dissipated powers (Fig. 1(b, d, f)). Mechanical energy 

transferred into the dissipative operation environment is represented by negative value of dissipated 

power based on virial theorem and energy conservation principle [3]. We have remarked in our 

earlier study that interaction of the first two flexural modes is prevalent in bimodal operation based 

on energy quantities [10]. Furthermore, high fluctuations in energy quantities are obtained as the 

force strength increases in the high-sensitivity frequency regions. There do not exist remarkable 

distinctions among virials and dissipated powers for diverse force strengths in the low-sensitivity 

frequency bands.    

 

Variations in energy quantities with respect to acoustic force strengths, determined based on SPLs 

in the range of 30-75 dB, are illustrated in Fig. 2. The acoustic force at the frequency of 230, 470, 

545 kHz is within the high-sensitivity frequency band for the micro-cantilever M1, M2, and M3 

respectively. On the other hand, other acoustic force frequencies depicted in Fig. 2 belong to the 

low-sensitivity frequency bands. The energy quantities exhibit more upward trends with increasing 

acoustic force strengths in high-sensitivity frequency ranges, when compared with the ones in the 

low-sensitivity frequency bands. Accordingly, higher response of free oscillations to acoustic 

forces within high-sensitivity frequency bands can be identified based on energy quantities.  

 

Virials of acoustic force interaction exhibit linear behavior for higher strengths of acoustic forces 

within high-sensitivity frequency bands (Fig. 2(a, c, e)). Increase in amplitudes owing to influences 

of external excitation forces and acoustic forces leads to steady increase in virials. Moreover, 

distinctions among low- and high-sensitivity frequency bands are quite evident based on dissipated 

power results (Fig. 2(b, d, f)). Energy dissipation owing to interaction with the acoustic forces is 

increasing as the force strength ascents for high-sensitivity frequency bands. 
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Figure 1. Virials and dissipated powers with respect to frequencies of dynamic acoustic forces with diverse strengths. 

(a) Virial curves for the micro-cantilever M1. (b) Dissipated power curves for the micro-cantilever M1. (c) Virial 

curves for the micro-cantilever M2. (d) Dissipated power curves for the micro-cantilever M2. (e) Virial curves for the 

micro-cantilever M3. (f) Dissipated power curves for the micro-cantilever M3. 

 

 

 



 

C. YİLMAZ et al./ ISITES2021 Sakarya - Turkey    

 

338 

 

 
 
Figure 2. Virials and dissipated powers with respect to strengths of dynamic acoustic forces within low- and high-

sensitivity frequency regions. (a) Virial curves for the micro-cantilever M1. (b) Dissipated power curves for the micro-

cantilever M1. (c) Virial curves for the micro-cantilever M2. (d) Dissipated power curves for the micro-cantilever M2. 

(e) Virial curves for the micro-cantilever M3. (f) Dissipated power curves for the micro-cantilever M3. 
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4. Conclusions 

 

Energy quantities such as virial and dissipated power are determined analytically for acoustic force 

measurement based on oscillation observables such as amplitude and phase shift. Numerical 

calculations have proved that a wider high-sensitivity frequency region is achieved by driving the 

micro-cantilever array under multimodal operations. High-sensitivity frequency bands are 

determined by identifying remarkable fluctuations in energy quantities. The energy dissipation 

process occurring in the measurement of dynamic acoustic forces is described in consideration of 

virial and dissipated power terms. More significantly, boundaries of the high-sensitivity frequency 

bands in the range of around 200-270 kHz and 440-570 kHz depend considerably on the eigenmode 

frequencies of the micro-cantilevers. In addition, the simulation results point out that driving the 

micro-cantilevers at higher eigenmode frequencies enables obtaining higher sensitivities to 

acoustic forces at higher frequencies. Furthermore, energy quantities exhibit steady and increasing 

trends for the force strengths in the range of around 400-2000 pN within the high-sensitivity 

frequency bands. Therefore, variations in energy quantities with respect to frequencies and 

strengths of acoustic forces can be utilized as complementary sensitivity indicators in the 

measurement of dynamic acoustic forces.   
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