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Abstract 

 
This study presents an approach for investigating free vibration problem of small-scale tubes based on 

modified couple stress theory in conjunction with higher order shear deformation tube model. The size 

effect is captured through utilization of a length scale parameter involved in modified couple stress 

theory. A newly developed refined tube model is employed to satisfy friction-free conditions on inner 

and outer surfaces of micro-tubes. Hamilton’s principle is used as a variational technique for derivation 

of governing system of equations. For axial vibrations, an analytical procedure is conducted, while for 

transverse vibrations differential quadrature method is used as a numerical technique. The correctness 

of numerical results are verified through comparisons made with results which are available in the 

literature for limiting cases. The analyses reveal the effects of size and transverse shear deformation on 

the natural frequencies of micro-tubes. 
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1. Introduction 

 

Tubes/pipes are among mechanical components, which are extensively used in structural systems. 

Along with the recent advances in the fields of micro- and nano- mechanical systems (MEMS and 

NEMS) and manufacturing technologies, small-sized tubes have attracted considerable attention. 

The rapidly growing applications of small-scale tubes has urged many researchers to investigate 

mechanical behavior of these structures. It is experimentally evidenced that classical elasticity is 

incapable of predicting the size-dependent behavior of micro-structures [1, 2]. Hence, some 

researchers have put forward novel higher order continuum theories. Among these nonclassical 

theories, couple stress theories [3, 4], strain gradient theories [1, 5], nonlocal elasticity [6], nonlocal 

strain gradient theory [7] and surface elasticity [8] are commonly used by researchers. 

 

In most of the applications, tubes can be modeled as beams with tubular cross-sections. Bending, 

buckling and free vibration problems of tubular micro-beams have intensively been addressed by 

many researchers. In studies conducted by Chakraverty and Jena [9], Civalek and Demir [10], 

Mercan and Civalek [11] and Shafiei et al. [12] mechanics of micro- and nano-tubes have been 

investigated based on Eringen’s non-local elasticity theory. Modified couple stress theory (MCST) 

by Yang et al. [4] has been employed to analyze mechanical behavior of small-sized pipes in a 

number of papers [13-15]. Zhen et al. [16] and Mehralian et al. [17] investigated the free vibration 

problem of nano-tubes by utilizing nonlocal strain gradient theory. 

 

In all studies mentioned in the foregoing paragraph, as well as most studies available in the 
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literature, Euler-Bernoulli and Timoshenko beam models are generally used to express the 

displacement field. However, the transverse shear stress is neglected in Euler-Bernoulli model, and 

Timoshenko beam theory considers a constant shear stress through the thickness of the tube, which 

are both strictly simplifying assumptions. Therefore, there is a need for a refined model to satisfy 

stress-free conditions in the inner and outer surfaces of tubes. Although there are variety of higher 

order shear deformable models for beams possessing rectangular cross-sections [18, 19], the 

number of refined annular tube models are few. By taking the shear deformation effects into 

account Zhang and Fu [20] established a higher order tube model (HOTM), appropriate for tubular 

beams. They conducted bending, free vibrations and wave propagation analyses based on newly 

developed model and compared their results with conventional theories. Based on HOTM, some 

researches regarding mechanics of macro- and small-scale tubes have been carried out. In some of 

these studies higher order shear deformable model is used in conjunction with nonlocal elasticity 

to put forward an accurate size-dependent analyses technique for tubes [21, 22]. In order to 

investigate vibrations of buckled functionally graded (FG) tubes in thermal environment, Babaei 

and Reza Eslami [23] employed the modified couple stress theory and higher order tube model. 

Based on refined tube model, Zhong et al. [24] studied bending and vibration problems of FG tubes 

considering the temperature effects. 

 

In the current study, governing equations and associated boundary conditions for free vibration 

problem of micro-tubes are derived in accordance with MCST and HOTM. Displacement field of 

the annular micro-tube is expressed in a unified way to be able to produce numerical results 

corresponding to three different beam theories, which are Euler-Bernoulli, Timoshenko, and higher 

order shear deformable tube model. Equation system of motion is solved by means of differential 

quadrature method (DQM). Presented numerical results illustrate influences of scale effects and 

different tube models upon natural frequencies of micro-tubes. 

 

 

2. Formulation 

 

Fig. 1 shows the configuration and geometrical parameters of a micro-tube having an inner radius 

ri, an outer radius ro and a length L. u1, u2 and u3 denote the displacements of any point at time t 

along x1, x2 and x3 directions, respectively, and can be expressed in a unified form as given below: 

( ) ( ) ( )
11 1 3 1 3 , 2 3 1, , , , ( , )xu x x t u x t x w f x x x t= − +   (1.a) 

( )2 1 3, , 0u x x t =    (1.b) 

( ) ( )3 1 2 3 1, , , ,u x x x t w x t=  (1.c) 

u and w designate the displacement of any point on horizontal middle surface along x1 and x3 

directions, respectively, “,” stands for partial derivative, γ is the transverse shear strain of any point 

on the neutral axis and can be related to bending rotation ϕ through 

( ) ( ) ( )
11 , 1 1, , , ,xx t w x t x t = +  (2) 

Through-the-thickness distribution of transverse shear strain and stress is characterized by shape 

function f. Different tube models, namely Euler – Bernoulli tube model (EBTM), Timoshenko tube 

model (TTM) and higher order tube model (HOTM) [20] can be derived by utilizing the following 

shape functions: 
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( )2 3EBTM:     , 0f x x =  (3.a) 

( )2 3 3TTM:     ,f x x x=  (3.b) 

( )
( )

2 2 2

3
2 3 223 2

HOTM:    , 
3

o i

o i

x r r r
x x

r
x

r r
f

 
= +  


−

+
 (3.c) 

Note that the shear stress is neglected in EBTM; TTM considers a constant distribution profile for 

transverse shear; and a nonlinear pattern is achieved for shear strain and stress using HOTM. 

 

 
Fig. 1. Tube configuration 

 

Partial differential equations of motion and boundary conditions governing the dynamic problem 

of the micro-tube are derived by using Hamilton’s principle. It postulates that 

( )
2

1

0.
t

t
K U dt − =  (4) 

Note that for free vibration analysis, the work done by external forces are disregarded. U  and K  

in Eq. (4) are total strain energy and kinetic energy, respectively. 

 

According to modified couple stress theory (MCST) [4], strain energy U of the micro-tube is 

written as: 

( )
1

,
2

ij ij ij ijU m dV  


= +  (5) 

where ij  and ij  are classical stress and strain components; ij  is symmetric curvature tensor; ijm  

is the higher order stress tensor associated with ij ; and   is occupied volume. 

 

The deformation gradients in Eq. (5) are defined by 

( ), ,

1
,

2
ij i j j iu u = +  (6.a) 

( ), ,

1
.

2
ij ipq qj p jpq qi pe e  = +  (6.b) 

ijke  represents alternating tensor, and ij  is Kronecker delta. Constitutive relations are written as 

x1

x3x3

x2

ri

ro

r

L
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2ij ij ij kk   = +  (7.a) 

22ij ijm l =  (7.b) 

λ and µ are Lame’s constants given by 

( )( ) ( )
,       

1 1 2 2 1

E E
 

  
= =

+ − +
 (8) 

where E is modulus of elasticity and ν is Poisson’s ratio. l in Eq. (7.b) is the material length scale 

parameter characterizing the small-scale effect. 

 

Kinetic energy is of the forms: 
22 2

31 21
,

2

uu u
K

t t t
dV



       
= + +      

         
  (9) 

where ρ is mass density. 

 

Introducing expressions for U and K and associated relations into Hamilton’s principle leads to the 

following system of governing partial differential equations:  
2 2

11 12 2

1

,:  
u u

Au I
x t


 

=
 

 (10.a) 

( )

( )

( )

( )

4 2

22 11 33 152 552 552 772 55 774 2

1 1
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662 882 682 992 7722 3

1 1

55 77 662 882 682 2

2

9
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9
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1 1
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1 1
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1
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w w
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k F k F F F

w
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x

I
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F

I I
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



  
− − + − − − + + 

  

  
+ + − + + − 

  

 
+ + + − + 





− +

−

−

 

−

+

= ( )
4 2 3

1 5 62 2 2 2

1 1

,
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I I I
x t t x t

 
+ + −

    

 (10.b) 
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F
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x t t








  
− + − + − + 

 

  
− + − + + + + 

  

  
+ − + − + − + = − + 

   

 (10.c) 

and the boundary conditions read 

1

1

10   or   ,0
x

u A
u




=


=  (11.a) 
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 (11.b) 
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 (11.c) 

2

33 22 552 1 3 55 752 772 3 22

1

72

1

1 1
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1 1 1
0   or   

4 2 4 4 4

w
F F F F F F

xx
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
 
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
+ = 

  
= − + − + +

   
 (11.d) 

ks here is the shear correction factor and is taken as unity for HOTM and for Timoshenko beam 

model when used for annular cross-section is given as follows [25] 

( ) ( )

( )( ) ( )

2 22

2 4 2 2

6 1 1

7 12 4 1 34 48 16
sk

 

     

+ +
=

+ + + + + +
 (12) 

where /i or r = . The stiffness and inertia parameters appeared in Eqs. (10) and (11) are as follows 

 
( )

( )( )
 2 2

11 11 22 33 3 3

1
,  ,  ,  1,  ,  , 

1 1 2 A

E
A D F F x x f f dA



 

−
=

+ −   (13.a) 

   
3 2

2 2

55 , ,77,    ,x x
A

F f f AF d=   (13.b) 
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992 68552 552 152 66 72

2 2 2 2
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F F

f dA= 
 (13.c) 

   2 2

1 3 5 6 3 3, , , 1, , ,
A

I I I I x x f f dA=   (13.d) 

 

 

3. Numerical Solution 

 

The system comprising governing differential equations and boundary conditions is numerically 

solved by employing differential quadrature method (DQM). In this method, mth derivative of a 

function is approximated by a weighted sum of functional values at all grid points. For a tube that 

is discretized in longitudinal direction by a number of nodes N, the mth derivative of a function 

( ),z x t  with respect to x at a point ix  is written as: 

( ) ( ) ( )
1

,
| , ,     = 1, 2, ..., 

i

m N
m

x x ij jm
j

z x t
c z x t i N

x
=

=


=


 . (14) 

where ( )m

ijc  are the weighting coefficients. 
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In order to conduct free vibration analysis dynamic displacement vector is defined by 
ie ,t=d d  (15) 

where   represents the natural frequency and *
d  is the vibration mode shape vector consisting of 

dynamic displacement vectors of field variables 

      
T

T T T
* * * *,  ,  ,    for  1,  2,  ...,  p p pu w p N= =d  (16) 

Substitution of Eq. (15) into governing equations and boundary conditions leads to the following 

eigenvalue problem 

  * , =2
K - M d 0  (17) 

where K  is stiffness matrix and M  is mass matrix derived from inertia terms. 

 

Although natural frequencies associated with the axial vibrations, axial , can be computed using the 

numerical procedures explained above, by further inspecting governing equations and boundary 

conditions, it can be understood that axial vibration, characterized by Eqs. (10.a) and (11.a), is fully 

decoupled from transverse (w and ϕ) vibration. In addition, the relations for axial dynamics can be 

solved analytically, which, for simply supported micro-tube, gives the following closed-form 

expression for axial  

11
axial

1

An

L I


 =  (18) 

where n is the axial vibration mode number. 

 

 

4. Numerical Results 

 

A simply supported micro-tube is considered to carry out numerical analyses. Material properties 

are similar to those of stainless steel with E = 201.04 GPa, ν = 0.3 and 8166 =  kg/m3. Unless 

otherwise mentioned the geometrical dimensions are taken as 10or = µm, / 1/ 2i or r = , 20 oL r= . 

The natural frequencies are non-dimensionalized through following relation 

or


 


=  (20) 

In Table 1 first dimensionless natural frequencies are compared to those given by Zhang and Fu 

[20]. Classical elasticity theory is used in conjunction with HOTM and TTM to produce the results 

provided in Table 1. The results are in excellent conformity with those of Zhang and Fu [20]. 
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Table 1. Comparisons of first dimensionless natural frequencies computed based on classical elasticity theory, l = 0. 

 

L / ro ri / ro 
HOTM  TTM 

Present Zhang and Fu [20]  Present Zhang and Fu [20] 

20/3 1/3 0.167 0.167  0.168 0.168 

25/3 2/3 0.121 0.121  0.123 0.123 

200/21 19/21 0.104 0.104  0.105 0.105 

 

Fig. 2 shows the variations of first dimensionless transverse natural frequencies with outer radius 

to length scale parameter ratios /or l . The results are generated based on Timoshenko theory, TTM, 

and refined tube model, HOTM. Also, the results of nonclassical MCST and classical elasticity 

theories can be compared. Note that /or l  is altered by changing the l-value and keeping or  as 

constant. The natural frequencies are seen to be an increasing function of the length scale parameter 

l. Although the results predicted by TTM and HOTM are very close to each other, a slightly smaller 

natural frequencies are computed by TTM. Another finding from Fig. 2 is that, as ro becomes 

sufficiently larger than length scale parameter l, the natural frequencies produced by MCST 

converge to those of conventional continuum theory. It is also worth mentioning that, axial 

vibration is not affected by change in the value of l and the first dimensionless axial natural 

frequency axial 0.2939 =  for all values of /or l . 

 

 
Fig. 2. First dimensionless transverse natural frequencies 

 

 

Provided in Table 2 are the first five dimensionless natural frequencies evaluated in different values 

of /or l . In this table, the frequencies belonging to axial vibrations are distinguished by “*”. Similar 

to findings of Fig. 2, increase in value of length scale parameter results in corresponding increase 

in the transverse natural frequencies. However, a change in /or l  has no effect on axial vibration 

frequencies. Generally, the first three natural frequencies in micro-tubes belong to transverse 

motion, when classical theory is used, i. e. when the size is sufficiently larger than micro-scale. 

Further inspection on Table 2 shows that introducing size effects via utilization of a length scale 
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parameter leads to a stiffer micro-tube in transverse direction which may cause axial vibrations to 

be dominant. 

 
Table 2. First five dimensionless natural frequencies computed using HOTM. 

 

ro / l 
Mode No. 

1 2 3 4 5 

0.1 0.2471 0.2939* 0.5877* 0.8816* 0.9749 

0.5 0.0554 0.2179 0.2939* 0.4787 0.5877* 

1.5 0.0302 0.1164 0.2487 0.2939* 0.4165 

l = 0 0.0251 0.0939 0.1923 0.2939* 0.3082 

*Dimensionless axial natural frequencies. 

 

 

 

5. Conclusion 

 

A new model for free vibration analysis of micro-tubes is developed based on modified couple 

stress theory. By employing a general displacement field, it is possible to retrieve micro-tube 

models based on different beam theories such as Euler-Bernoulli, Timoshenko and higher order 

shear deformation. An analytical solution procedure is developed for axial vibrations while DQM 

is utilized to conduct parametric analyses regarding transverse dynamics. 

 

The influence of length scale parameter upon natural frequencies is investigated by means of 

numerical results. It is observed that l has significant effect on mechanical responses of micro-

tubes, such that, higher value of length scale parameter results in stiffer tube. As l gets sufficiently 

smaller than geometric dimensions of tube, i.e. when tube thickness is so larger than length scale 

parameter, small-scale effect vanishes and results converge to those of classical theories. 

 

The differences observed between the natural frequency results of TTM and HOTM postulates that 

employing a refined higher order tube model is indispensable for an accurate prediction of 

mechanical responses. The frequencies predicted by TTM are slightly smaller than those generated 

by HOTM, because, TTM overestimates shear stresses which leads to a less stiff micro-tube. 

HOTM gives a proper shear stress distribution profile, and hence, results in more accurate 

evaluation of natural frequencies. 
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