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Abstract  

 
Fault diagnosis using vibration signals is a major challenge for industrial manufacturing. Obtaining 

defect information is an important step to make decisions about the maintenance in prognostic and health 

management systems. Existing studies mostly considers vibration signals collected from elements such 

as rolling element bearings and hydraulic presses. In this paper, we use the vibration signals obtained 

from the mechanical transfer press during metal forming process and analyze them from the signal 

processing point of view. Experimental results reveals that spectral analysis is a good candidate for fault 

diagnosis and it provides important information about the localized faults embedded in the vibration 

signals. 
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1. Introduction  

 

 Fault diagnosis is the task of detecting faults occur during metal forming process. It is 

an important problem since predictive maintenance and quality control are crucial for low cost 

production. It is also a challenging problem because collecting useful and appropriate data is 

the fundamental requirement for fault diagnosis. Fault diagnosis using vibration signals obtained 

from mechanical transfer press in forming process plays a vital role for industrial manufacturing. 

There exist several studies focusing on fault diagnosis mostly using vibration data 

acquired from rotating machinery or rolling-element bearings. For example, it was found by 

various researchers that envelope analysis is a powerful tool for diagnostics of rolling-element 

bearing signals [1, 2, 3]. In [1], authors compared cyclostationary and envelope analysis on 

vibration data for diagnosing of rolling-element bearings and they reported that envelope 

analysis is advantageous over cyclostationary analysis (spectral correlation). In [2], it was 

stated that a fault signal consist of two components: (i) deterministic part and (ii) stochastic 

part. It was reported that deterministic part is diminished by low pass filtering effects. Thus, 

squared envelope analysis was found to be an important method to overcome this problem [2]. 

A multiband envelope spectral extraction technique was proposed to tackle with determining 

optimal frequency band for narrow band demodulation using vibration signals for fault 

diagnosis in [3]. In previous studies it was observed that envelope spectrum is randomly 

distributed over the frequency. However, when vibration signal has local faults, envelope 

spectrum was found to be dominated by the fault characteristics [4, 5]. Vibration signals that 

have localized faults were treated as cyclostationary [6]. Therefore cyclostationary analysis 

for fault diagnosis has received great attention and several studies have been reported in 

literature. Spectral correlation, spectral coherence, spectral kurtosis and kurtogram are the 
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most widely used cyclostationary analysis techniques for fault diagnosis [6, 7, 8]. Wavelet 

analysis is another tool successfully applied on vibration data for fault diagnosis and it was 

observed that wavelet analysis is more efficient than short-term Fourier transform (STFT) for 

non-stationary transient vibration signals [9, 10]. 

In this study, we focus on fault diagnosis using vibration signals collected from 

mechanical transfer press. Although there are few studies previously focused on fault 

diagnosis using vibration data, data used in these studies obtained from hydraulic press [11]. In 

this work, the analyses are carried out from signal processing point of view. To this end, 

spectral analysis, envelope analysis and wavelet packet based analysis are utilized for fault 

diagnosis. 

 

 

2. Vibration Data Analysis  

 

2.1. Long Term Average Spectrum  

 

 Long-Term Average Spectrum (LTAS) provides information on the spectral distribution 

of the vibration signal. In the averaging process the short-time variations will be averaged out 

and resulting spectrum less affected by noise [12]. In many cases, observing the average 

frequency distribution of a signal’s energy would be highly informative. Long term average 

spectrum (LTAS) provides the spectral information of a signal averaged over time and it is 

generally used to investigate the persistent spectral features of a signal. LTAS has been 

successfully used for analysing various types of signals and found very helpful for audio signals 

in particular [13, 14].  

 Suppose that 𝑥[𝑛] is the signal that LTAS analysis will be evaluated on. First 𝑥[𝑛] is 

divided into overlapping blocks where each block consists of 𝑁samples and each block is 

windowed with a data-tapering window function 𝑤[𝑛]: 

 

𝑥[𝑘, 𝑛] =  ∑ 𝑥[𝑛]𝑤[𝑛 − 𝑘𝑀]𝑘𝑀+𝑁−1
𝑛=𝑘𝑀      (1)                                                   

where 𝑀 is the time shift (samples) between consecutive blocks and 𝑤[𝑛 − 𝑘𝑀] is the shifted 

version of the window function 𝑤[𝑛]. In order to compute the LTAS of the signal 𝑥[𝑛], first 

the power spectrum of each block 𝑥[𝑘, 𝑛] is computed: 

 

 
 

Figure 1. A three-level Wavelet packet transform used in this study. A: Approximations, D: Details. 



O. YÜCE et al./ ISITES2020 Bursa - Turkey                                                  3 

|𝑋(𝑘)(𝑓)|
2

=  |∑ 𝑥[𝑘, 𝑛]𝑒−𝑗2𝜋𝑓𝑛/𝑁𝑁−1
𝑛=0 |

2
    ( 2) 

 

Where 𝑓 = {0, 1, … , 𝑁 − 1} is the discrete frequency index and k is the frame index. |𝑋(𝑘)(𝑓)|
2
 is 

referred to as sepctogram of the signal 𝑥[𝑛] and provides time-frequency variation of a signal [15]. 

Then LTAS is computed as the logarithmic power spectrum averaged over all blocks: 

 

  𝐿𝑇𝐴𝑆(𝑓) =  
1

𝐾
∑ 𝑙𝑜𝑔𝐾

𝑘=1 |𝑋(𝑘)(𝑓)|
2
     ( 3) 

Where 𝐾 is the total number of short blocks extracted from 𝑥[𝑛]. 
  

 

2.2. Envelope Analysis 

 

 Analytical signal of a signal 𝑥[𝑛] is defined as: 

 

𝑥𝑎[𝑛] = 𝑥[𝑛] + 𝑗𝑥ℎ[𝑛]      ( 4) 

Where 𝑥ℎ[𝑛] is the Hilbert transform of the 𝑥[𝑛]. 
 Hilbert transform is widely used to finde the envelope of a modulated signal. If original 

vibration signal 𝑥[𝑛] is assumed to be generated by a modulation process, then the envelope of the 

modulated signal corresponds to the raw information (message) signal. Therefore, the envelope of 

the signal 𝑥[𝑛] is computed by the Hilbert transform is defined as: 

 

𝑒[𝑛] =  |𝑥𝑎[𝑛]| =  √𝑥2[𝑛] + 𝑥𝑎
2[𝑛]     ( 5) 

 

2.3. Wavelet Packet Analysis 

 

 Wavelet packet transform (WPT) is an extended version of standard wavelet transform 

(WT). At the first level of classical wavelet transform, the signal is first decomposed into two 

parts: approximation (A1) and details (D1). The approximation of the signal provides 

information about the signal’s low frequency characteristics whereas details part reveals more 

detailed information about the signal’s high frequency content. At the second level of WT, the 

approximation part obtained from the previous level is decomposed again into two components 

which corresponds to approximation (A2) and detail (D2). This process is repeated until the 

desired number of levels are achieved [16]. 

 WPT in turn, provides a more detailed analysis than WT because WT decomposes only 

the approximation parts into approximation and details components. However, WPT decomp 

poses both approximation and detail components at each level which results a more detailed 

analysis and a complete decomposition three. In this study, we use a three-level WPT (see Fig. 

1) to analyse the vibration signals for fault diagnosis. 
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Figure 2. Spectogram of normal and faulty vibration signals consisting of a single hit (case 1). 

 

3. Experimental Setup and Results  

 

3.1. Data Description 

 

 Vibration data is collected by two identical shear type piezoelectric accelerometer 

sensors. They are mounted to both horizontal sheet metal forming dies. Vibration signals are 

sampled at 20 kHz. Experimental analyses are conducted in two different cases: 

 

• case 1: Both normal and faulty vibration signals contain single hit of the press. 

• case 2: Both normal and faulty vibration signals contain multiple consecutive hits of  

   the press. 

 

With this we aim at investigating possible differences between normal and faulty signals and 

reveal the discriminating information. 

 

3.2. Signal Processing 

 

 In the experiments, we process the vibration signals by dividing them into short blocks 

as described in section 2. While processing the signals, we divide each signal into short frames 

consisting of 1000 samples (50 ms) and consecutive frames are overlapped by 500 samples 

(25 ms). Each short block is windowed by a 50 ms Hamming window. In order to transform 

the time-domain signals into frequency domain, we used 1024 point fast Fourier transform to 

calculate the discrete Fourier transform of the each block. 

 

3.3. Results 

 

3.3.1. Spectographic Analysis 

 

 In the experiments we first analyse the normal and faulty vibration signals by observing 
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their spectrograms in order to investigate their behaviours in time-frequency domain. Fig. 2 

shows the time domain normal and faulty signals consisting of single transfer press hits with 

their spectrograms. From figure, we can observe that normal and faulty signals considerably 

differ in their spectrograms. First, normal vibration signal contains more energy at high 

frequencies in comparison to faulty signal. Similarly, the energy of the normal signal within 

the frequency range 2-7 kHz is almost uniformly distributed over time and this is possibly 

because of the environmental noise. However, the faulty signals contains much less energy 

within this frequency range. 

 

Next, we analyse the spectrograms of the vibration signals consisting of multiple transfer 

press hits in order to see whether there exist important differences that does not occur in 

single hit signals. 

 
Figure 3. Spectogram of normal and faulty vibration signals consisting of a multiple hits (case 2). 

 

 Fig. 3 shows the time domain multiple hit signals and their spectograms (case 2). From figure, 

the quasi-periodic behaviours of the both signals (normal and faulty) can easily be seen in time 

domain signals as well as in spectograms. One interesting observation from the Fig. 3 is that both 

normal and faulty signals contains a consistent frequency component at 5 kHz. This probably 

corresponds to the component which continuously operates at 5 kHz frequency in hydraulic transfer 

press. In contrast to case 1 (single hit signals – Fig. 2), faulty signal has much more energy at high 

frequency region. 
 

3.3.2. LTAS Analysis 

 

 Long-term average spectra (LTAS) for normal and faulty signals for case 1 and case 2 are 

shown in Fig. 4. When normal and faulty signals consist of single hits, LTAS includes considerable 

differences in low and high frequency regions. We can observe significant differences in low and 

high frequency regions. We can observe significant differences from 0 Hz up to 2 kHz and from 8 

kHz to 10 kHz between normal and faulty signals consisting of single hits (left figure in Fig. 4). 

Interestingly, a spectral peak (impulse) occurs at 5 kHz frequency for normal signal whereas it does 

not exist for faulty signal. However, for signals consisting of multiple hits (case 2), both normal 
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and faulty signals contains a strong spectral peaks at 5 kHz frequency and they completely matches. 

Differences between normal and faulty signals in low frequency regions diminish when signals 

contains multiple press hits. 

 

 Next, we analyse the LTAS computed from the envelope signals rather than original 

signals. In this analysis we assume that original vibration data is generated by a modulation 

process and therefore envelope signal contains the information signal that is modulated by 

a carrier. To this end, we first computed the envelope signal as described in section 2.2 and 

then LTAS of the envelope signal is obtained. Fig 5 shows the LTAS of the envelope signals 

for single and multiple hits. For the signals with single hits, LTAS of the envelope signal shows 

similar behaviour up to 5 kHz whereas above the 5 kHz frequency the trend becomes different 

for normal and faulty signals. For instance, normal signal has a harmonic at 6 kHz frequency. 

However, faulty signal does not have such harmonic structure. For multiple hits (2nd column 

in Fig. 5) in turn, we can observe the harmonic structure of the signals at different frequencies. 

Although the envelope spectra of both normal and faulty signals mostly show similar trends, 

they differ in 6-7 kHz frequency range. The normal signal has a single harmonic within 

this range, the faulty signal has 2 harmonics in the same range. 

 

 
 

Figure 4 . Long-Term average spectra for single (left) and multiple hits (right) vibration data. 

 

 
Figure 5 . Long-Term average spectra computed from envelope signals for single (left) and multiple hits (right) 

vibration data. 
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3.3.2. WPT Analysis 

 

 The last fault diagnosis experiments are carried out using the signals obtained from the 

different nodes of the WPT. To this end we first construct a wavelet packet tree consisting 

of three levels as described in section 2.3 and then processed original signals through tree and 

the signals reconstructed at the different nodes of the tree are used for fault diagnosis 

analysis. The envelope of the reconstructed signals at different nodes are computed and then 

LTAS of the envelope signals are calculated. Experimentally we analyzed each node of the 

tree and found that the nodes 7 and 11 give the most interesting results. Therefore we report 

the analyses using signals obtained from these nodes. 

 

 Fig. 6 and Fig. 7 show the LTAS of the envelope of the reconstructed signals from nodes 

7 and 11 for single and multi- hits, respectively. Interestingly, we can see that the envelope 

spectra contain three impulses and they are located exactly at the same frequency for normal 

and faulty signals. This observation holds true for both node 7 and node 11. The energy of 

the normal and faulty signals obtained from the 7th node of the WPT are different for different 

frequency locations. However, the energy of the signals are very similar for the signal 

corresponding to 11th node of the WPT. 

 

 
Figure 6 . Envelope spectra computed from the signals reconstructed from the nodes 7 and 11 of WPT for single 

vibration data. 

 

 
Figure 7 . Envelope spectra computed from the signals reconstructed from the nodes 7 and 11 of WPT for multiple 

hits vibration data. 
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 For the multiple hits case (case 2), in contrast to single hit case (Fig. 6), the envelope spectra 

of the normal and faulty signals obtained from the 7th node of the WPT have very similar 

trends and both signals have the similar energy distributions over the frequency. However, 

except from the three impulses, there exist other harmonics in the spectra and faulty signal 

have more harmonic components than the normal signal. The number of these harmonics 

reduces in the case of 11th node signal and these harmonics are disappears. There are only 

three impulses in the envelope spectra of the 11th node signals. 

 

4. Conclusions 

 

 In this paper, we addressed the problem of fault diagnosis using the vibration signals 

collected from the mechanical transfer press. We analysed the signals using four different 

analysis methods. Experiments were conducted on normal and faulty signals consisting of 

single hits (case 1) and multiple hits (case 2). We found that normal and faulty signals 

considerably differ at low (below 2 kHz) and high (above 8 kHz) frequency regions when both 

signals contains only a single hit. In case of both signals consist of multiple successive press hits 

(case 2), the differences in low frequency region was found to be diminished and a spectral 

peak/impulse at 5 kHz for both normal and faulty signals occurred. When signals were analysed 

using wavelet packet transform, we observed three impulses for each signal (normal and 

faulty) occurring exactly at the same frequency values.  
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