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Abstract  

 
Digital systems consist of thousands of digital circuit blocks operating in the background, working in 

their simplest form such as addition, subtraction, multiplication, division. In exponential expressions 

like square roots and cube roots, just like these circuits, it is found in many digital systems and 

performs tasks. Although these processes seem to be used only in circuits carrying out mathematical 

operations, they actually take an active role in solving many engineering problems. In this study, a 

digital circuit design that computes both the integer and a floating point exponent of a 32-bit floating-

point number has been realized. This digital circuit, which is coded with VHDL language, can be used 

from beginner to advanced level in FPGA based systems. This digital circuit, which is coded with 

VHDL language, can be used from beginner to advanced level in FPGA based systems. In addition, 

three floating IP cores - logarithm, multiplication and exponent - were used in this digital circuit, and 

results were obtained with a total of five finite state machines in sixty-six clock pulse time. 

 

 

Key words: FPGA design, embedded system, IP-Core, floating-point, exponential 
 

 

1. Introduction 

 

Nowadays, operations are carried out on the hardware due to reasons such as decreasing 

hardware costs, making it easier to design hardware and increasing hardware capabilities [1]. In 

this sense, logarithmic and exponential numbers are frequently used, especially in mathematical 

formulas [2]. Exponential numbers, which are frequently used in solving engineering problems, 

have a very complex structure in digital design, although they can easily produce results in 

today's computers. Especially the mathematical operations performed with floating point 

numbers tire digital systems quite a lot. For this reason, besides ALU, there is also an FPU unit 

for processing decimal numbers in processors. Floating-point numbers were first adopted as the 

industry standard in 1985 then they were revised in 2008 and standardized as IEEE 754-2008 [3]. 

Thus, until today, due to its strong representation ability, it has been widely preferred in computer 

systems with 32-bit length single precision and 64-bit length double precision [4]. There are two 

possibilities for decimal numbers especially for those using FPGA technology. One of them is 

floating point numbers while the other are fixed numbers. When the literature is examined in 

detail, we witness that both of them are widely used in many studies [5, 6, 7].  

 

Since FPGA technology allows for hardware-based and raw design, there are currently no 

arithmetic functions found in many software-based applications [8]. It is already known that the 

most important feature of this technology is application specific. Therefore, designers need to 

shape their designs according to what processes they will perform [9]. However, some common 

applications used by everyone are converted to IP Core and made available to designers. 
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Therefore, instead of making a new design, the designer takes the IP Core and integrates it into its 

design [10]. In this sense, when we look at the literature, an extremely rich design library is 

encountered. So much so that there are situations in which the same designs are created with 

different methods. For example, Kachhwa and Route developed a square root algorithm using the 

Vedic Mathematical method and compared this algorithm with the square root algorithm 

developed by the Newton-Raphson method. In these studies, they obtained 16-bit floating point 

number output against 24-bit floating point input value. Thus, at the end of the study, a complex 

circuit was simplified, occupying less space and became simpler. [11]. Zhou and Hu scaled the 

similar square root operation to a value between 0-1 after obtaining a 16-bit integer output value 

against 16-bit integer input. So, thanks to the study, the square root operation could be calculated 

more simply by shifting, adding and subtracting operations. [12]. Guardia and Boemo were able 

to realize the cube root of floating point numbers in IEEE 754-2008 standard with Newton-

Raphson method in only two iterations in their study [13]. Therefore, operations that are common 

for a software-based programming language and can be performed easily cannot be done directly 

in FPGA. This is the most important disadvantage of using FPGA and unfortunately this makes 

the technology very difficult to learn [14]. 

 

In this study, a design has been carried out in which the base and power numbers are floating 

point numbers in the IEEE 754-2008 standard. Therefore, both input values and output values are 

32-bit long. 

 

2. Materials and Method 

 

In this study, an FPGA-based hardware design that performs exponential function calculation is 

presented. This design, in which the input and output values used as numerical data are 32-bit 

floating point numbers, performs the operation mathematically expressed in Equation 1.  

 

𝐹 = 𝑎𝑏       (Eq. 1) 

 

In the equation "F" is the output value, "a" and "b" are the input value. "a" is the base of the 

exponential function and "b" is the power. Single-precision floating-point numbers that support 

the IEEE 754-2008 standard are used as the number format in the design. 

 

2.1. Floating Point Standard  

 

IEEE 754 based floating-point numbers are widely used in today's computer systems due to their 

representation power. These numbers, which were first standardized in 1985, were finalized with 

a small revision in 2008. They have 32-bit length single and 64-bit length double precision and 

consist of three parts: Sign, Exponent and Fraction [15]. 

 

 
Figure 1. 32-bit single precision floating point number 
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Figure 1 shows a 32-bit single precision floating point number, its divisions, and the bit lengths 

of the segments. The most valuable bit (MSB) is called the sign bit, the next 8-bit exponent and 

the last remaining 23-bit is called the fraction part [16]. 

 

 
Figure 2. 64-bit double precision floating point number 

Figure 2 shows a 64-bit single precision floating point number, its divisions, and the bit lengths 

of the segments. The most valuable bit (MSB) is called the sign bit, the next 11-bit exponent and 

the last remaining 52-bit is called the fraction part [16]. 

 

 
Figure 3. Step by step conversion of a real number to floating point number 

Figure 3 shows the stages of the conversion of a real number to a floating point number based on 

an example number. The conversion process takes place in five steps. The real number is binary 

represented by 8-bit, while floating point is represented by 32-bit. Table 1 shows the portions and 

bit lengths of both single and double precision floating point numbers. 

 
Table 1. Single and double precision floating point sections 

TYPES SIGN EXPONENT MANTISSA BIAS 

Single Precision 1 (31 st bit) 8 (30 - 23) 23 (22 - 0) 127 

Double Precision 1 (63 rd bit) 11 (62 - 52) 52 (51 - 0) 1023 

 

Final (Sign-Exponent-Mantissa)

0 10000100 01101010000000000000000

STEP-5) Sign

Number = 45.25 Positive = 0

STEP-4) Mantissa (After point should be 23-bit)

Scientific = 1.0110101 01101010000000000000000

STEP-3) Exponent

25 = 127 + 5 = 132 132 = 1000 0100

STEP-2) Scientific representation of the binary number

Normal = 101101.01 Scientific = 1.0110101

STEP-1) Converting from Decimal to binary

Decimal = 45.25 Binary = 101101.01
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2.2. FPGA (Field Programming Gate Array) Technology  

 

In the 1990s, the electronics world met with a new hardware technology. This was such a 

technology that it had both very fast processing capability and rapid prototyping on a product 

basis. With this technology, called FPGA, designs that can be directly reconfigured in the field 

could be realized [17]. However, in terms of usage, FPGAs stand out as an empty device and they 

have to realize all the designs they will use in every designer application. For example, ready-

made functions such as mathematical functions, analog-digital conversions found in many 

embedded devices (raspberry, PIC, Arm) are not available in FPGAs. This is one of the major 

disadvantages of these devices and a major obstacle for first time users [18]. 

 

 
Figure 4. Architecture of FPGA 

Figure 4 shows the structure of a basic FPGA and their interconnection. As it seems, an FPGA 

consists of three important units: CLB, IOB, SM.CLBs are the most basic unit and the designs 

performed are found here. It is named as configurable logical block. As can be seen from Figure 

4, the more CLBs there are in an FPGA, the larger the circuits can be accommodated [19]. 

Already, it is the CLBs that make FPGAs stand out from other embedded systems, enabling the 

transactions to be hardware-based and ultra-fast.  

 

Although IOBs (Input/output Block) vary from application to application, they can also be used 

as output pins as input pins. These pins each of which is 1-bit, come together to form data groups 

in the form of 4, 8, 16, 32 bits [20].  

 

SMs actually carry out the function of managing and routing the paths that provide the 

connection between input / output pins and logical blocks (CLB). Because, if a design is too 

large, it is placed in more than one logical block (CLB) and the communication of these logical 

blocks with each other is completely carried out by SMs [21]. 

 

Table 2 contains the comparison of FPGA and other devices used in some studies in the 
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literature. Even from these studies, it can be seen that FPGAs are actually ideal for performance 

and real-time systems. 

 
Table 2. Comparison of some literature 

STUDY YEAR PROCESS FPGA OTHER DEVICE SPEED 

[22] 1998 (512x512) Image Processing 1.31 ms DSP - 42 ms 42x 

[23]  2008 (640x480) Optical Flow Algorithm 320 µs GPU - 3.85 ms 12x 

[24] 2009 
UAV Real Time Path Planning – Genetic 

Algorithm (selection and crossover) 
8.85 µs Computer – 94 ms 10.000x 

[25] 2017 K-Nearest Neighbour Algorithm 0.346 W 
GPU GTX960 - 30 

W 
87x 

[26] 2016 Jacobi algorithm (N=256 – row vector) 44.58 ms CPU - 1326.88 ms 30x 

[27] 2016 Robot manipulator inverse kinematics 0.101 µs GPU - 32.384 µs  320x 

[28] 2019 
Large-Scale Computing System  

(Data Center)  

Power 

Reduction 

89% 

Power Reduction 

GPU – 8% 
11x 

[29] 2018 Particle Swarm Optimization 0.48 ms CPU - 2.2 ms 4.5x 

 

2.3. Mathematical Expression of Design 

 

The mathematical model of the operation performed within the scope of this study is given in 

Equation 2. This equation is also the formula for exponential computation in mathematics. So 

what is actually meant to be done is the formula given in Equation 1. Equation 2 is the 

mathematical expression of this formula. 

 

𝐹 = 𝑒𝑏 (ln 𝑎)      (Eq. 2) 

 

2.4. Hardware Design of the Exponent Computation 

 

Xilinx Nexys 4 DDR device was taken as a base in the digital design realized within the scope of 

this study and VHDL hardware description language was used. As seen in Equation 2, there are 

"Logarithmic" and "Exponential" functions in the formula. For these functions and multiplication 

operation, IP Cores in the Xilinx library are used. Since first logarithm, then multiplication and 

finally exponential computation must be performed respectively, finite state machines are used in 

the design. The algorithm used in the design is shown in Figure 5. 
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Figure 5. Step by step design algorithm 

3. Results 

 

Operations are performed with 32-bit floating point numbers and six finite state machines in 

total. The decimal part of real numbers is infinite in the real world. However, this situation is kept 

at a certain number in floating point numbers. This situation is clearly seen in the simulation 

results. 
Table 3. Input and output values (CPU) 

 DECIMAL HEX BIN 

INPUT (base) 4.2 40866666 0 10000001 00001100110011001100110 

INPUT (pow)  2.156 4009fbe7 0 10000000 00010011111101111100111 

OUTPUT (Result) 22.06609 41b0875a 0 10000011 01100001000011101011010 

 

Table 3 and Table 4 show the computer and FPGA representations of the numbers used as 

examples. It seems clear that the 32-bit constraint in representation affects the value of the 

numbers used in the FPGA, albeit very little. 

 
Table 4. Input and output values (FPGA) 

 DECIMAL HEX BIN 

INPUT (base) 4.19999 40866666 0 10000001 00001100110011001100110 

INPUT (pow)  2.15599 4009fbe7 0 10000000 00010011111101111100111 

OUTPUT (Result) 22.06608 41b0875a 0 10000011 01100001000011101011010 

Step-6) FSM: SEND

The final result is transferred to the output. (F)

Step-5) FSM: EXPONENT (IP CORE-3)

Exponential calculation of the multiplication result is being performed. (F = ef2)

Step-4) FSM: MULTIPLY (IP CORE-2)

The logarithm of the base value is multiplied by the exponent. (f2 = f1 * b)

Step-3) FSM: LOGARITHM (IP CORE-1)

The Logarithm of the base value is calculated. (f1 = Ln a)

Step-2) FSM. GETTING_NUMBER

Base and power information is retrieved (a, b)

Step-1) FSM: IDLE

It is the state that keeps the system idle and prepares it for operation.
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Figure 6. Simulation results of design 

Figure 6 shows the simulation results performed with the sample numbers given in Table 3. After 

six finite state machines, results are obtained in 66 clock pulses (the signal is cycle_count in 

figure). The number of clock pulses required for each finite state to occur is shown in Table 5. 

Table 5. FSM cycle count in design 

ORDER FINITE STATE MACHINE COUNT 

1 IDLE 0 

2 GETTING_NUMBER  2 

3 LOGARITHM 26 

4 MULTIPLY 12 

5 EXPONENT 23 

6 SEND 3 

TOTAL - 66 

 

One of the most important elements of FPGA-based digital circuits is circuit cost, that is, the 

dimensions of the circuit. Since the design is based on floating point numbers, three different IP 

Cores are used.  

Table 6. Cost of design 

IP CORE LUT FF DSP 

LOGARITHM 781 1200 4 

MULTIPLIER 159 308 2 

EXPONENTIAL 882 726 1 

TOTAL (Design) 1822 2234 7 

TOTAL (FPGA Nexyx DDR 4) 95100 126800 240 

PERCENTAGE 2% 1.8% 3% 

 



 

S. DERELİ et al./ ISITES2020 Bursa - Turkey    

 

298 

 

Conclusions 

 

In this study, a design that performs exponential calculation of floating point numbers with IEEE 

754 standard has been realized. Since the operations had to be performed one after the other, it 

was concluded with finite state machines sequentially. In total, the output value was obtained at 

the end of 66 cycles with six finite state machines. Since the floating-point numbers used are 32-

bit single-precision, there are differences in the numbers by one tenth or one hundred thousandth. 

The most important advantage of the design is that it reaches results in a short time, the circuit 

cost is low, and it uses floating point numbers in both the base and the power. In addition, it can 

be used easily as a structural sub-circuit in any design. 
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