
©2020 Published in 8th International Symposium on Innovative Technologies in
Engineering and Science 23-25 October 2020 (ISITES2020 Bursa - Turkey)
https://doi.org/10.33793/acperpro.03.01.59

*Corresponding author: Address: Department of Computer Technologies and Programming Sakarya University of

Applied Sciences, 54187, Sakarya TURKEY. E-mail address: dereli@subu.edu.tr, Phone: +902646160492

Exponential Computing Digital Circuit Design Developed for FPGA-based

Embedded Systems

*1Serkan Dereli and 2Mahmut Uç

1,2Bilgisayar Teknolojileri ve Programlama Bölümü, Sakarya Uygulamalı Bilimler Üniversitesi, Sakarya, Türkiye

Abstract

Digital systems consist of thousands of digital circuit blocks operating in the background, working in

their simplest form such as addition, subtraction, multiplication, division. In exponential expressions

like square roots and cube roots, just like these circuits, it is found in many digital systems and

performs tasks. Although these processes seem to be used only in circuits carrying out mathematical

operations, they actually take an active role in solving many engineering problems. In this study, a

digital circuit design that computes both the integer and a floating point exponent of a 32-bit floating-

point number has been realized. This digital circuit, which is coded with VHDL language, can be used

from beginner to advanced level in FPGA based systems. This digital circuit, which is coded with

VHDL language, can be used from beginner to advanced level in FPGA based systems. In addition,

three floating IP cores - logarithm, multiplication and exponent - were used in this digital circuit, and

results were obtained with a total of five finite state machines in sixty-six clock pulse time.

Key words: FPGA design, embedded system, IP-Core, floating-point, exponential

1. Introduction

Nowadays, operations are carried out on the hardware due to reasons such as decreasing

hardware costs, making it easier to design hardware and increasing hardware capabilities [1]. In

this sense, logarithmic and exponential numbers are frequently used, especially in mathematical

formulas [2]. Exponential numbers, which are frequently used in solving engineering problems,

have a very complex structure in digital design, although they can easily produce results in

today's computers. Especially the mathematical operations performed with floating point

numbers tire digital systems quite a lot. For this reason, besides ALU, there is also an FPU unit

for processing decimal numbers in processors. Floating-point numbers were first adopted as the

industry standard in 1985 then they were revised in 2008 and standardized as IEEE 754-2008 [3].

Thus, until today, due to its strong representation ability, it has been widely preferred in computer

systems with 32-bit length single precision and 64-bit length double precision [4]. There are two

possibilities for decimal numbers especially for those using FPGA technology. One of them is

floating point numbers while the other are fixed numbers. When the literature is examined in

detail, we witness that both of them are widely used in many studies [5, 6, 7].

Since FPGA technology allows for hardware-based and raw design, there are currently no

arithmetic functions found in many software-based applications [8]. It is already known that the

most important feature of this technology is application specific. Therefore, designers need to

shape their designs according to what processes they will perform [9]. However, some common

applications used by everyone are converted to IP Core and made available to designers.

https://doi.org/10.33793/acperpro.03.01.59

S. DERELİ et al./ ISITES2020 Bursa - Turkey

292

Therefore, instead of making a new design, the designer takes the IP Core and integrates it into its

design [10]. In this sense, when we look at the literature, an extremely rich design library is

encountered. So much so that there are situations in which the same designs are created with

different methods. For example, Kachhwa and Route developed a square root algorithm using the

Vedic Mathematical method and compared this algorithm with the square root algorithm

developed by the Newton-Raphson method. In these studies, they obtained 16-bit floating point

number output against 24-bit floating point input value. Thus, at the end of the study, a complex

circuit was simplified, occupying less space and became simpler. [11]. Zhou and Hu scaled the

similar square root operation to a value between 0-1 after obtaining a 16-bit integer output value

against 16-bit integer input. So, thanks to the study, the square root operation could be calculated

more simply by shifting, adding and subtracting operations. [12]. Guardia and Boemo were able

to realize the cube root of floating point numbers in IEEE 754-2008 standard with Newton-

Raphson method in only two iterations in their study [13]. Therefore, operations that are common

for a software-based programming language and can be performed easily cannot be done directly

in FPGA. This is the most important disadvantage of using FPGA and unfortunately this makes

the technology very difficult to learn [14].

In this study, a design has been carried out in which the base and power numbers are floating

point numbers in the IEEE 754-2008 standard. Therefore, both input values and output values are

32-bit long.

2. Materials and Method

In this study, an FPGA-based hardware design that performs exponential function calculation is

presented. This design, in which the input and output values used as numerical data are 32-bit

floating point numbers, performs the operation mathematically expressed in Equation 1.

𝐹 = 𝑎𝑏 (Eq. 1)

In the equation "F" is the output value, "a" and "b" are the input value. "a" is the base of the

exponential function and "b" is the power. Single-precision floating-point numbers that support

the IEEE 754-2008 standard are used as the number format in the design.

2.1. Floating Point Standard

IEEE 754 based floating-point numbers are widely used in today's computer systems due to their

representation power. These numbers, which were first standardized in 1985, were finalized with

a small revision in 2008. They have 32-bit length single and 64-bit length double precision and

consist of three parts: Sign, Exponent and Fraction [15].

Figure 1. 32-bit single precision floating point number

S. DERELİ et al./ ISITES2020 Bursa - Turkey

293

Figure 1 shows a 32-bit single precision floating point number, its divisions, and the bit lengths

of the segments. The most valuable bit (MSB) is called the sign bit, the next 8-bit exponent and

the last remaining 23-bit is called the fraction part [16].

Figure 2. 64-bit double precision floating point number

Figure 2 shows a 64-bit single precision floating point number, its divisions, and the bit lengths

of the segments. The most valuable bit (MSB) is called the sign bit, the next 11-bit exponent and

the last remaining 52-bit is called the fraction part [16].

Figure 3. Step by step conversion of a real number to floating point number

Figure 3 shows the stages of the conversion of a real number to a floating point number based on

an example number. The conversion process takes place in five steps. The real number is binary

represented by 8-bit, while floating point is represented by 32-bit. Table 1 shows the portions and

bit lengths of both single and double precision floating point numbers.

Table 1. Single and double precision floating point sections

TYPES SIGN EXPONENT MANTISSA BIAS

Single Precision 1 (31 st bit) 8 (30 - 23) 23 (22 - 0) 127

Double Precision 1 (63 rd bit) 11 (62 - 52) 52 (51 - 0) 1023

Final (Sign-Exponent-Mantissa)

0 10000100 01101010000000000000000

STEP-5) Sign

Number = 45.25 Positive = 0

STEP-4) Mantissa (After point should be 23-bit)

Scientific = 1.0110101 01101010000000000000000

STEP-3) Exponent

25 = 127 + 5 = 132 132 = 1000 0100

STEP-2) Scientific representation of the binary number

Normal = 101101.01 Scientific = 1.0110101

STEP-1) Converting from Decimal to binary

Decimal = 45.25 Binary = 101101.01

S. DERELİ et al./ ISITES2020 Bursa - Turkey

294

2.2. FPGA (Field Programming Gate Array) Technology

In the 1990s, the electronics world met with a new hardware technology. This was such a

technology that it had both very fast processing capability and rapid prototyping on a product

basis. With this technology, called FPGA, designs that can be directly reconfigured in the field

could be realized [17]. However, in terms of usage, FPGAs stand out as an empty device and they

have to realize all the designs they will use in every designer application. For example, ready-

made functions such as mathematical functions, analog-digital conversions found in many

embedded devices (raspberry, PIC, Arm) are not available in FPGAs. This is one of the major

disadvantages of these devices and a major obstacle for first time users [18].

Figure 4. Architecture of FPGA

Figure 4 shows the structure of a basic FPGA and their interconnection. As it seems, an FPGA

consists of three important units: CLB, IOB, SM.CLBs are the most basic unit and the designs

performed are found here. It is named as configurable logical block. As can be seen from Figure

4, the more CLBs there are in an FPGA, the larger the circuits can be accommodated [19].

Already, it is the CLBs that make FPGAs stand out from other embedded systems, enabling the

transactions to be hardware-based and ultra-fast.

Although IOBs (Input/output Block) vary from application to application, they can also be used

as output pins as input pins. These pins each of which is 1-bit, come together to form data groups

in the form of 4, 8, 16, 32 bits [20].

SMs actually carry out the function of managing and routing the paths that provide the

connection between input / output pins and logical blocks (CLB). Because, if a design is too

large, it is placed in more than one logical block (CLB) and the communication of these logical

blocks with each other is completely carried out by SMs [21].

Table 2 contains the comparison of FPGA and other devices used in some studies in the

S. DERELİ et al./ ISITES2020 Bursa - Turkey

295

literature. Even from these studies, it can be seen that FPGAs are actually ideal for performance

and real-time systems.

Table 2. Comparison of some literature

STUDY YEAR PROCESS FPGA OTHER DEVICE SPEED

[22] 1998 (512x512) Image Processing 1.31 ms DSP - 42 ms 42x

[23] 2008 (640x480) Optical Flow Algorithm 320 µs GPU - 3.85 ms 12x

[24] 2009
UAV Real Time Path Planning – Genetic

Algorithm (selection and crossover)
8.85 µs Computer – 94 ms 10.000x

[25] 2017 K-Nearest Neighbour Algorithm 0.346 W
GPU GTX960 - 30

W
87x

[26] 2016 Jacobi algorithm (N=256 – row vector) 44.58 ms CPU - 1326.88 ms 30x

[27] 2016 Robot manipulator inverse kinematics 0.101 µs GPU - 32.384 µs 320x

[28] 2019
Large-Scale Computing System

(Data Center)

Power

Reduction

89%

Power Reduction

GPU – 8%
11x

[29] 2018 Particle Swarm Optimization 0.48 ms CPU - 2.2 ms 4.5x

2.3. Mathematical Expression of Design

The mathematical model of the operation performed within the scope of this study is given in

Equation 2. This equation is also the formula for exponential computation in mathematics. So

what is actually meant to be done is the formula given in Equation 1. Equation 2 is the

mathematical expression of this formula.

𝐹 = 𝑒𝑏 (ln 𝑎) (Eq. 2)

2.4. Hardware Design of the Exponent Computation

Xilinx Nexys 4 DDR device was taken as a base in the digital design realized within the scope of

this study and VHDL hardware description language was used. As seen in Equation 2, there are

"Logarithmic" and "Exponential" functions in the formula. For these functions and multiplication

operation, IP Cores in the Xilinx library are used. Since first logarithm, then multiplication and

finally exponential computation must be performed respectively, finite state machines are used in

the design. The algorithm used in the design is shown in Figure 5.

S. DERELİ et al./ ISITES2020 Bursa - Turkey

296

Figure 5. Step by step design algorithm

3. Results

Operations are performed with 32-bit floating point numbers and six finite state machines in

total. The decimal part of real numbers is infinite in the real world. However, this situation is kept

at a certain number in floating point numbers. This situation is clearly seen in the simulation

results.
Table 3. Input and output values (CPU)

 DECIMAL HEX BIN

INPUT (base) 4.2 40866666 0 10000001 00001100110011001100110

INPUT (pow) 2.156 4009fbe7 0 10000000 00010011111101111100111

OUTPUT (Result) 22.06609 41b0875a 0 10000011 01100001000011101011010

Table 3 and Table 4 show the computer and FPGA representations of the numbers used as

examples. It seems clear that the 32-bit constraint in representation affects the value of the

numbers used in the FPGA, albeit very little.

Table 4. Input and output values (FPGA)

 DECIMAL HEX BIN

INPUT (base) 4.19999 40866666 0 10000001 00001100110011001100110

INPUT (pow) 2.15599 4009fbe7 0 10000000 00010011111101111100111

OUTPUT (Result) 22.06608 41b0875a 0 10000011 01100001000011101011010

Step-6) FSM: SEND

The final result is transferred to the output. (F)

Step-5) FSM: EXPONENT (IP CORE-3)

Exponential calculation of the multiplication result is being performed. (F = ef2)

Step-4) FSM: MULTIPLY (IP CORE-2)

The logarithm of the base value is multiplied by the exponent. (f2 = f1 * b)

Step-3) FSM: LOGARITHM (IP CORE-1)

The Logarithm of the base value is calculated. (f1 = Ln a)

Step-2) FSM. GETTING_NUMBER

Base and power information is retrieved (a, b)

Step-1) FSM: IDLE

It is the state that keeps the system idle and prepares it for operation.

S. DERELİ et al./ ISITES2020 Bursa - Turkey

297

Figure 6. Simulation results of design

Figure 6 shows the simulation results performed with the sample numbers given in Table 3. After

six finite state machines, results are obtained in 66 clock pulses (the signal is cycle_count in

figure). The number of clock pulses required for each finite state to occur is shown in Table 5.

Table 5. FSM cycle count in design

ORDER FINITE STATE MACHINE COUNT

1 IDLE 0

2 GETTING_NUMBER 2

3 LOGARITHM 26

4 MULTIPLY 12

5 EXPONENT 23

6 SEND 3

TOTAL - 66

One of the most important elements of FPGA-based digital circuits is circuit cost, that is, the

dimensions of the circuit. Since the design is based on floating point numbers, three different IP

Cores are used.

Table 6. Cost of design

IP CORE LUT FF DSP

LOGARITHM 781 1200 4

MULTIPLIER 159 308 2

EXPONENTIAL 882 726 1

TOTAL (Design) 1822 2234 7

TOTAL (FPGA Nexyx DDR 4) 95100 126800 240

PERCENTAGE 2% 1.8% 3%

S. DERELİ et al./ ISITES2020 Bursa - Turkey

298

Conclusions

In this study, a design that performs exponential calculation of floating point numbers with IEEE

754 standard has been realized. Since the operations had to be performed one after the other, it

was concluded with finite state machines sequentially. In total, the output value was obtained at

the end of 66 cycles with six finite state machines. Since the floating-point numbers used are 32-

bit single-precision, there are differences in the numbers by one tenth or one hundred thousandth.

The most important advantage of the design is that it reaches results in a short time, the circuit

cost is low, and it uses floating point numbers in both the base and the power. In addition, it can

be used easily as a structural sub-circuit in any design.

References

[1] Kösten MM, Efe MÖ. Implementation of Discrete Time Sliding Mode Control with

Floating Point Arithmetic on an FPGA. Otomatik Kontrol Ulusal Toplantısı 2015.

[2] Koyuncu İ, Çetin Ö, Katırcıoğlu F, Tuna M. Edge dedection application with FPGA based

Sobel operator. 23nd IEEE Signal Processing and Communications Applications

Conference (SIU) 2015; 1829-1832.

[3] Çavuşlu MA, Karakuzu C, Şahin S, Karakaya F. Yapay sinir ağı eğitiminin IEEE 754

kayan noktalı sayı formatı ile FPGA tabanlı gerçeklenmesi. İstanbul: İstanbul Teknik

Üniversitesi (GOMSİS) 2008.

[4] Kamm L, Willemson J. Secure floating point arithmetic and private satellite collision

analysis. Int. J. Inf. Secur. 2015; 14:531-548.

[5] Higham NJ, Pranesh S. Simulating low precision floating-point arithmetic. SIAM Journal

on Scientific Computing 2019; 41:585-602.

[6] Brain M, Tinelli C, Rümmer P, Wahl T. An automatable formal semantics for IEEE-754

floating-point arithmetic. IEEE 22nd Symposium on Computer Arithmetic 2015; 160-167.

[7] Catrina O. Round-efficient protocols for secure multiparty fixed-point arithmetic.

International Conference on Communications (COMM) 2018; 431-436.

[8] Nane R, Sima VM, Pilato C, Choi J, Fort B, Canis A, Anderson J. A survey and evaluation

of FPGA high-level synthesis tools. EEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 2015; 35:1591-1604.

[9] Zhang C, Prasanna V. Frequency domain acceleration of convolutional neural networks on

CPU-FPGA shared memory system. ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays 2017.

S. DERELİ et al./ ISITES2020 Bursa - Turkey

299

[10] Tolba MF, Fouda ME, Hezayyin HG, Madian AH, Radwan AG. Memristor FPGA IP core

implementation for analog and digital applications. IEEE Transactions on Circuits and

Systems II: Express Briefs 2018; 66:1381-1385.

[11] Kachhwal P, Rout BC. Novel Square Root Algorithm and its FPGA Implementation.

International Conference on Signal Propagation and Computer Technology (ICSPCT)

2014:158-162.

[12] Zhou Z, Hu J. A Novel Square Root Algorithm and its FPGA Simulation. Journal of

Physics: Conference Series 2019.

[13] Guardia CM, Boemo E. FPGA implementation of a binary32 floating point cube root. IEEE

Southern Conference on Programmable Logic (SPL) 2014.

[14] Wang T, Wang C, Zhou X, Chen H. A Survey of FPGA Based Deep Learning

Accelerators: Challenges and Opportunities. Distributed, Parallel, and Cluster Computing

2018:1-10.

[15] Malík P. High throughput floating point exponential function implemented in FPGA. IEEE

Computer Society Annual Symposium on VLSI 2015:97-100.

[16] Rao YS, Kamaraju M, Ramanjaneyulu DVS. An FPGA implementation of high speed and

area efficient double-precision floating point multiplier using Urdhva Tiryagbhyam

technique. IEEE Conference on Power, Control, Communication and Computational

Technologies for Sustainable Growth (PCCCTSG) 2015.

[17] Perera DG. Analysis of FPGA-Based Reconfiguration Methods for Mobile and Embedded

Applications. 12th FPGA world Conference 2015:15-20.

[18] Tolba MF, AbdelAty AM, Soliman NS, Said LA, Madian AH, Azar AT, Radwan AG.

FPGA implementation of two fractional order chaotic systems. AEU-International Journal

of Electronics and Communications 2017; 78:162-172.

[19] Abdelkrim H, Othman SB, Saoud SB. Reconfigurable SoC FPGA based: Overview and

trends. IEEE International Conference on Advanced Systems and Electric Technologies

(IC_ASET) 2017.

[20] Dereli S. FPGA ile Gömülü Sistemler ve Sayısal Devre Tasarımı. 1st ed. Ankara: NOBEL

Akademik Yayıncılık; 2020.

[21] Dereli S. Yüksek Hızlı FPGA ile Yeni Bir LFSR Tabanlı 32-Bit Kayan Noktalı Rastgele

Sayı Üreteci Tasarımı. International Journal of Advances in Engineering and Pure Sciences

2020; 32:219-228.

S. DERELİ et al./ ISITES2020 Bursa - Turkey

300

[22] Bilsby DCM, Walke RL, Smith RWM. Comparison of a programmable DSP and a FPGA

for real-time multiscale convolution. IEE Colloquium on High Performance Architectures

for Real-Time Image Processing, 1998.

[23] Chase J, Nelson B, Bodily J, Wei Z, Lee DJ. Real-time optical flow calculations on FPGA

and GPU architectures: a comparison study. 16th IEEE International Symposium on Field-

Programmable Custom Computing Machines 2008:173-182.

[24] Allaire FC, Tarbouchi M, Labonté G, Fusina G. FPGA Implementation of Genetic

Algorithm for UAV Real-Time Path Planning. Journal of Intelligent and Robotic Systems

2008; 54:495–510.

[25] Muslim FB, Ma L, Roozmeh M, Lavagno L. Efficient FPGA implementation of OpenCL

high-performance computing applications via high-level synthesis. IEEE Access 2017;

5:2747-2762.

[26] Torun MU, Yilmaz O, Akansu AN. FPGA, GPU, and CPU implementations of Jacobi

algorithm for eigenanalysis. Journal of Parallel and Distributed Computing 2016; 96:172-

180.

[27] Rizvi STH, Cabodi G, Patti D, Gulzar MM. Comparison of GPGPU based robotic

manipulator with other embedded controllers. 2016 International Conference on

Development and Application Systems (DAS) 2016:10-15.

[28] Gizopoulos D, Papadimitriou G, Chatzidimitriou A, Reddi VJ, Salami B, Unsal OS, Leng J.

Modern Hardware Margins: CPUs, GPUs, FPGAs Recent System-Level Studies. IEEE

25th International Symposium on On-Line Testing and Robust System Design (IOLTS)

2019:129-134.

[29] Lee H, Kim K, Kwon Y, Hong E. Real-time particle swarm optimization on FPGA for the

optimal message-chain structure. Electronics 2018;7:274.

