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Abstract  

 
In the present study, compressible high speed flow in a radial compressor is investigated by 

Computational Fluid Dynamics (CFD) and the numerical results of pressure ratios and adiabatic 

efficiencies are validated against available data in the literature. The radial compressor of interest 

operates at a rotational speed of 21789 rpm and its main components are rotor, diffuser and exit guide 

vanes. The main motivation of the study is to determine the appropriate CFD approach and boundary 

conditions of the problem that will fit best to the measurements. The entire maps of the three-stage radial 

compressor have been obtained by CFD analysis and they agreed well with the measurements with 

maximum relative errors of approximately 3.6% and 1.3% for the adiabatic efficiency and the 

compression ratio, respectively  
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1. Introduction  

 

In literature there are many numerical studies to simulate compressible flow in radial compressors. 

In the studies [1-5] the researchers investigated different CFD modeling settings about interfaces 

and boundary conditions to successfully model compressible flow in various types of high speed 

compressors. Liu and Hill [5] discussed different interface models that can be implemented to 

rotational and stationary parts of the turbo-compressor and pointed out that the results from 

circumferential averaging type interface approach were more similar to transient analysis than the 

frozen rotor interface for a vaned diffuser radial compressor. The study of Gibson et. al. [7] 

provided a detailed comparison of turbulence models for a two-stage radial compressor with vaned 

diffuser. They compared five different turbulence models and recommended the k-ω SST 

turbulence model [10] for the entire speed line of the compressor. In many related studies, k-ω SST 

turbulence model proposed by Menter was used by many researchers in their CFD simulations for 

compressible flows in radial compressors [2, 6, 8, 9].   

 

In the present study, a benchmark problem was utilized to validate the CFD results of the radial 

compressor of interest.  The measurements of the High Efficiency Centrifugal Compressor (HECC) 

used in the present study for validation are taken from the experiments which have been conducted 

in National Aeronautics and Space Administration (NASA) Small Engine Components Test 

Facility. In these experiments, HECC impeller was operated at five different speeds in the range 

between surge and choke lines. The geometry of the HECC, the data of the measurements and the 

measurement instrumentations used in the test rig are available in the NASA contractor report 

‘High Efficiency Centrifugal Compressor for Rotorcraft Applications (2014)’ [11].  
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2. HECC Geometry  

 

HECC is an open-source geometry designed by NASA and United Technologies Research Center 

(UTRC). HECC geometry can be generated from hub, shroud and blade profile coordinates, its 

CAD model and meridional section are shown in Fig. 1. The main parts of the HECC geometry are 

a set of three blade rows figuring out the impeller, diffuser and the exit guide vane (EGV).  In this 

configuration, the impeller is composed of fifteen pairs of main and splitter blades, the diffuser row 

is composed of twenty pairs of main and splitter blades and EGV has sixty cascade type blades. 

Impeller blades are backswept and have a 0.3 mm tip clearance. All the blades have elliptical 

leading and trailing edges.  

 

The computational domain consists of the rotating impeller, stationary diffuser and EGV. In the 

CFD analysis for both the impeller and the diffuser one main and one splitter blade are selected 

and the EGV is represented by only one blade. As a result of this path selection from inlet to outlet 

in the computational domain, the angles for the impeller, diffuser and the EGV are 24°, 18° and 6°, 

respectively. Thus, the pitch ratio between these three domains is not equal which requires the 

usage of the mixing-plane interface between the domains.   

 

  
Figure 1. CAD model (left) and the meridional section of the HECC (right). 

 

 

3. Numerical Modeling   

 

In this section the main features of the computational domain with the boundary conditions and 

mesh convergence tests are presented.  

 

3.1. CFD Approach and Boundary Conditions 

 

At the inlet of the radial compressor the total pressure of 101325 Pa and the total temperature of 

15 °C are defined for air at a design mass flow rate of 5.11 kg/s. The design rotational speed of the 

impeller is 21789 rpm, in the present study %100 and 90% of this design speed are used. It should 

be noted that the shroud wall of the impeller domain is non-rotating. For other operating conditions, 
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different mass flow rates are defined as outlet boundary condition. CFD studies have been carried 

out using flow solver software ANSYS-CFX version 2020 R1. In the CFD calculations, steady-

state compressible flow is modelled using ideal gas approach for air. One blade from each blade 

set is used to decrease computational cost and save computational time. Circumferential averaging 

type interface is used between domains. As suggested in literature, k-ω SST turbulence model is 

selected since it can predict the flow variables close to measurements with relatively low 

computational effort.   

 

3.2. Mesh Sensitivity 

 

After extensive mesh sensitivity tests the adequate mesh with sufficient number of elements and 

necessary mesh requirements is determined as shown in Table 1. Mesh sensitivity tests are carried 

out with the design boundary and operating conditions, namely 5.11 kg/s mass flow rate and 21789 

rpm impeller speed. Hexahedral elements are used in all domains. A mesh with nearly 11.3 million 

cells is found to be sufficient and decided for further calculations. Figure 2 shows the representative 

mesh topology in the vicinity of the leading edge of the impeller.  

 

Table 1. Mesh Sensitivity Tests 

  

Number of 

Cells 

[millions] 

Adiabatic 

Efficiency 

[%] 

Relative 

Error for 

Adiabatic 

Efficiency  

[%] 

Pressure 

Ratio 

[-] 

Relative 

Error for 

Pressure 

Ratio  

[%] 

Average 

y+ 

[-]  

Experiment - 80.31 - 4.506 - - 

Mesh 1 4.7 82.05 2.17 4.458 1.06 9.00 

Mesh 2 8.0 82.70 2.96 4.521 0.33 5.87 

Mesh 3 11.3 82.89 3.20 4.544 0.84 2.62 

Mesh 4 18 82.99 3.29 4.550 0.97 1.84 

Mesh 5 25 82.99 3.33 4.553 1.03 1.45 

 

 
Figure 2. A representative mesh topology  



 

S.E.AK et al./ ISITES2020 Bursa – Turkey  87    

 

87 

 

4. Results 

 

In the CFD calculations the entire compressor map for pressure ratios and adiabatic efficiencies 

are plotted against all operating points given in the experiments as demonstrated in Fig. 3a, and 3b, 

respectively. It is shown that there is an acceptable and convincing agreement between the 

predicted CFD results and the measurements. The main reason for the deviations at highest mass 

flow rates is ‘choking’ which should be linked to the mass flow rate boundary condition at the 

outlet. In experimentations the real boundary condition at the outlet is pressure outlet. But this 

phenomenon is insignificant in HECC mapping since the study focuses on the surge region.   

 

 
 

 
Figure 3. Maps for (a) pressure ratio, (b) adiabatic efficiency at design (100%) and 90% speeds. 
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Fig.4 indicates the flow fields in the diffuser and EGV sections in color scales compared between 

design (5.11 kg/s) and surge mass flow rates (4.7 kg/s, lowest mass flow rate) at the design 

rotational speed (100%).  If the compressor is operated at the design mass flow rate, a notable flow 

separation zone occurs on main diffuser vane’s pressure surface near the leading edge. If operated 

at a surge mass flow rate, the flow separation zone forms on the suction surface of diffuser vane 

close to the trailing edge as demonstrated in Fig.5. However, flow separation is observed on the 

suction surface of the EGV blades at both design and surge mass flow rates.  

 

 
Figure 4. Flow fields in diffuser and EGV domains: Design mass flow rate at (a) 50% span, (b) 25% span and Surge 

mass flow rate at (c) 50% span, (d) 25% span (View is duplicated). 

 

 
Figure 5. Surface streamlines indicating flow separation zones on diffuser vane surfaces.  
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The CFD analysis reveal that flow separation zones occur at different locations on the diffuser 

blades at various span-wise sections depending on the mass flow rates. This suggests that the 

appropriate choice of the mass flow rate is vital in understanding flow separation on the diffuser 

blades’ surfaces.   

Figure 6 shows the pressure contours at 50% span of the radial compressor at the design mass flow 

rate and the surge mass flow rate. In the impeller part, the pressure distributions are almost identical 

for both mass flow rates. However, the most notable difference in the pressure contours is observed 

in the diffuser section. If the radial compressor is operated at a surge mass flow rate, the pressure 

gradient at the leading edge of the main diffuser blades are higher than the design mass flow rate. 

This suggests that the appropriate choice of the mass flow rate is also important in the magnitude 

of the pressure between the impeller and the diffuser.   

 
Figure 6. Pressure distribution at 50% span: Design mass flow rate (Top), Surge mass flow rate (Bottom) (View is 

duplicated). 

 

5. Conclusions 

 

In this study, CFD analysis have been carried out for a radial compressor known as HECC in 

literature and the results are compared against the reported measurements. The analysis are 

conducted using k-ω SST turbulence model for steady compressible air flow with ideal-gas 

assumption as proposed in literature.  All the operating points (13-14 points) have been taken into 

consideration and a convincing agreement is found between numerical and experimental data in 

the entire operation range between surge and choke lines where the maximum relative errors are 
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3.6% and 1.3% for the adiabatic efficiency and the pressure ratio, respectively. Choking could not 

be successfully modelled because the outlet is subjected to mass flow rate boundary condition in 

the CFD analysis. The CFD analysis provide a deeper insight into the steady compressible flow 

and assist to better understand flow structures such as primary flow separation zones on the diffuser 

blades. Future studies can include active flow control strategies which can be an alternative solution 

to prevent or delay flow separation.      
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