

Tekrarlamalı Gauss-Seidel Algoritması ile İşaret Modelleme Signal Modelling with Recursive Gauss-Seidel Algorithm

*1Metin Hatun

*1Faculty of Engineering, Electrical-Electronics Engineering Dept., Bursa Uludağ University, Turkey

Özet

Periyodik işaretler Fourier serisi açılımı kullanılarak harmonik bileşenlerinin toplamı cinsinden ifade edilebilmektedir. Periyodik işaretlerin harmonik bileşenlerinin katsayılarını tahmin etmek için son yıllarda literatürde çeşitli sistem tanıma algoritmaları kullanılmıştır. Bu çalışmada periyodik işaretlerin harmonik bileşenlerinin parametrelerini gerçek zamanda tahmin edebilmek için, bir adım Gauss-Seidel iterasyonu kullanılarak elde edilen RGS (Recursive Gauss-Seidel) algoritması önerilmiştir. Tekrarlamalı bir algoritma olan RGS algoritması çevrim-içi parametre tahmini için uygun bir algoritmadır. Yapılan bilgisayar benzetimleriyle, önerilen RGS algoritması harmonik parametrelerinin tahmin edilmesinde kullanılmış ve benzer sistem tanıma algoritmalarıyla karşılaştırmalı olarak incelenmiştir.

Anahtar kelimeler: Sinyal modelleme, parametre tahmini, Fourier serileri, Gauss-Seidel, tekrarlamalı algoritma.

Abstract

Periodic signals can be expressed in terms of the sum of its harmonic components using the Fourier series expansion. Several system identification algorithms have been used in the literature in recent years to estimate the coefficients of the harmonic components of periodic signals. In this study, RGS (Recursive Gauss-Seidel) algorithm, which is a recursive algorithm based on one step Gauss-Seidel iteration, is proposed to estimate the parameters of the harmonic components of periodic signals in real time. The RGS algorithm, which is a recursive algorithm, is a suitable algorithm for on-line parameter estimation. By computer simulations, the proposed RGS algorithm is used for estimation of harmonic parameters and analyzed with similar system identification algorithms comparatively.

Key words: Signal modelling, parameter estimation, Fourier series, Gauss-Seidel, recursive algorithm

1. Giriş

Periyodik sinyaller mühendislik alanında birçok uygulamada karşımıza çıkmaktadır ve bu sinyaller çoklu sinüsoidal bileşenlerin toplamı şekilde modellenebilmektedir [1-3]. Literatürde bu sinüsoidal bileşenlerin genlik, frekans ve faz değerlerini tahmin etmek için çeşitli yöntemler önerilmiştir. Önerilen yöntemler kabaca parametrik olmayan (dönüşüm tabanlı) yöntemler ve parametrik yöntemler olarak iki gruba ayrılabilir [2]. Parametrik yöntemler, sinüsoidal bileşenlerin parametrelerinin doğrudan tahmin edilmesi bakımından ön plana çıkmaktadır. Parametrik yöntemler ise gerçekleme açısından iteratif yöntemler ve tekrarlamalı olmak üzere ikiye ayrılabilir. İteratif yöntemlerde yeterli miktarda ölçüm verisi biriktirildikten sonra tek bir yöntem ile veya iteratif bir yöntem kullanılarak parametre tahmin işlemi yapılmaktadır [4-6].

*Corresponding author: Address: Faculty of Engineering, Electrical-Electronics Engineering Dept. Bursa Uludağ University, 16059, Bursa TURKEY. E-mail address: metinh@uludag.edu.tr, Phone: +902242942027

Tekrarlamalı yöntemlerde ise parametre tahminleri her örnekleme aralığında sonra güncellendiği için çevrim-içi (online) uygulamalar için daha uygundur ve parametrelerdeki değişiklikler gerçek zamanlı izlenebilmektedir [7-13]. Bu amaçla literatürde çeşitli sistem tanıma algoritmaları kullanılmıştır: SG (Stochastic Gradient) algoritması [7], NLMS (Normalized Least Mean Squares) algoritmasi [9], RLS (Recursive Least Squares) algoritmasi [7,8], MI-SG (Multi-Innovation Stochastic Gradient) algoritması [10], Newton algoritması [13], FLMS (Fractional Least Mean Squares) algoritmalari [14], ve FLMS algoritmasının değisik versiyonları [15,16], Kaczmarz izdüşüm algoritması [18]. Klasik Jacobi algoritması [18], ve Gauss-Seidel algoritmaları her örnekleme aralığında belirli bir hata değerini sağlayıncaya kadar çoklu iterasyon yapılarak kullanılması, ve yine bunların hızlandırılmış versiyonlarının çoklu iterasyon yapılarak kullanılması işlem yükünü arttırmaktadır [3,19]. Diğer taraftan, bir kısmı eğim tabanlı, bir kısmı en küçük kareler tabanlı olan bu algoritmalara alternatif olarak, doğrusal denklem takımlarının çözümü üzerine kurulu olan RGS algoritması önerilmiştir [20,21]. RGS algoritmasında her örnekleme aralığında bir adımlık Gauss-Seidel iterasyonu kullanılmaktadır ve böylece işlem yükü RLS algoritmasından daha az olan ve RLS algoritmasına çok yakın bir başarım performansı gösteren tekrarlamalı bir algoritma elde edilmektedir. Bu çalışmanın amacı, daha önce RLS algoritmasına alternatif olarak önerilen RGS algoritmasını harmonik parametrelerini tahmin etmek için kullanmaktır.

2. Harmonik Parametrelerinin Tahmin Edilmesi Problemi ve Parametre Tahmin Modeli

Periyodik işaretler, harmonik bileşenlerinin toplamı cinsinden aşağıdaki gibi ifade edilebilir:

$$x(k) = a_0 + \sum_{i=1}^{N} A_i \sin(i\omega_0 t_k + \phi_i) \quad , \quad (k = 0, 1, 2, ...)$$
(1)

Burada x(k), periyodik işaretin $t_k = kT_s$ örnekleme anlarındaki ayrık-zaman örnekleri olup T_s örnekleme periyodudur. Ayrıca $\omega_0 = 2\pi/T$ işaretin temel frekansı, T işaretin periyodu, a_0 ise işaretin dc bileşenidir. İşareti oluşturan N adet harmonik bileşenin genlikleri A_i ve fazları ϕ_i ile gösterilir. Periyodik işaretin Fourier serisi açılımı $\sin(a + b) = \sin(a)\cos(b) + \cos(a)\sin(b)$ formülü kullanılarak

$$x(k) = a_0 + \sum_{i=1}^{N} [a_i \sin(i\omega_0 t_k) + b_i \cos(i\omega_0 t_k)]$$
(2)

olarak yazılabilir, burada harmonik bileşenlerin parametreleri $a_i = A_i \cos(\phi_i)$ ve $b_i = A_i \sin(\phi_i)$ olup harmonik bileşenlerin genlikleri A_i ve fazları ϕ_i aşağıdaki gibi hesaplanabilir:

$$A_i = \sqrt{a_i^2 + b_i^2}$$
, $\phi_i = \arctan(b_i/a_i)$, $i = 1, 2, ..., N.$ (3)

İşaretin harmonik bileşenlerin parametrelerini tahmin etmek amacıyla bir tahmin modeli, işaretin ayrık-zaman modeli (2) denklemi kullanılarak aşağıdaki gibi yazılabilir:

$$y(k) = \boldsymbol{\varphi}^{T}(k)\boldsymbol{\theta} + v(k) \tag{4}$$

burada y(k) ölçülen işaretin gürültülü ayrık-zaman örnekleri olup, v(k) ölçme gürültüsüdür. İşaretin parametre vektörü $\boldsymbol{\theta}$ ile veri vektörü $\boldsymbol{\varphi}^{T}(k)$ aşağıdaki gibi tanımlanabilir:

$$\boldsymbol{\theta} = \begin{bmatrix} a_0 & a_1 & b_1 & a_2 & b_2 & \cdots & a_N & b_N \end{bmatrix}^T \in \mathbb{R}^{2N+1}$$
(5)

$$\boldsymbol{\varphi}(k) = \begin{bmatrix} 1 & \sin(\omega_0 t_k) & \cos(\omega_0 t_k) & \sin(2\omega_0 t_k) & \cos(2\omega_0 t_k) & \cdots \\ & \cdots & \sin(N\omega_0 t_k) & \cos(N\omega_0 t_k) \end{bmatrix}^T \in \mathbb{R}^{2N+1}$$
(6)

Burada problem, temel frekansı $\omega_0 = 2\pi/T$ olan periyodik işaretin y(k) ayrık-zaman örneklerini kullanarak işaretin Fourier serisi açılımındaki bileşenlerin katsayılarını (a_i ve b_i) ve (3) eşitliği yardımıyla işareti oluşturan harmonik bileşenlerin genliklerini (A_i) ve fazlarını (ϕ_i) tahmin etmek olarak tanımlanabilir.

3. RGS Algoritması ile Harmonik Parametrelerinin Tahmin Edilmesi

En küçük kareler tabanlı algoritmalarda aşağıdaki gibi tanımlanan bir karesel hata fonksiyonunu minimum yapan parametre değerleri aranmaktadır,

$$V(k, \hat{\boldsymbol{\theta}}(k)) = \frac{1}{2} \sum_{i=1}^{k} \lambda^{k-i} e^2(i)$$
(7)

burada tahmin hatası aşağıdaki gibi tanımlanmıştır ve $0 < \lambda \le 1$ ise unutma faktörüdür [].

$$e(k) = y(k) - \boldsymbol{\varphi}^{T}(k)\widehat{\boldsymbol{\theta}}(k-1)$$
(8)

Tahmin hatası e(k) mevcut en son parametre tahminleri $\hat{\theta}(k-1)$ kullanılarak hesaplanır ve parametre tahminlerinden ve ölçme gürültüsünden kaynaklanan belirsizlikleri içerir. Parametre tahminleri vektörü aşağıdaki gibi tanımlanır:

$$\widehat{\theta}(k) = [\hat{a}_0(k) \quad \hat{a}_1(k) \quad \hat{b}_1(k) \quad \hat{a}_2(k) \quad \hat{b}_2(k) \quad \cdots \quad \hat{a}_N(k) \quad \hat{b}_N(k)]^T \in \mathbb{R}^{2N+1}$$
(9)

En küçük kareler hata fonksiyonunu minimum yapan optimum parametre vektörü

$$\widehat{\boldsymbol{\theta}}_{o}(k) = \boldsymbol{R}^{-1}(k)\boldsymbol{p}(k) \tag{10}$$

olarak hesaplanır, burada $\hat{\theta}_o(k)$, k adım veri seti kullanılarak hesaplanan optimum parametre tahmin vektörüdür ve aynı zamanda aşağıda tanımlanan normal denklemin çözümüdür.

$$\boldsymbol{R}(k)\widehat{\boldsymbol{\theta}}_{o}(k) = \boldsymbol{p}(k) \tag{11}$$

Korelasyon matrisi tahmini $\mathbf{R}(k)$ ile korelasyon matrisi tahmini $\mathbf{p}(k)$ aşağıdaki gibi hesaplanır:

$$\boldsymbol{R}(k) = \sum_{i=1}^{k} \lambda^{k-i} \boldsymbol{\varphi}(i) \boldsymbol{\varphi}^{T}(i) \quad , \quad \boldsymbol{p}(k) = \sum_{i=1}^{k} \lambda^{k-i} \boldsymbol{\varphi}(i) \boldsymbol{y}(i)$$
(12)

Pratik uygulamalarda bu tahminler önceki değerlerine yeni veriler ilave edilerek aşağıdaki gibi güncellenir ve böylece, harmonik parametre tahminlerini tekrarlamalı olarak hesaplamak için kullanılan RGS algoritması aşağıdaki gibi yazılabilir:

$$\boldsymbol{R}(k) = \lambda \, \boldsymbol{R}(k-1) + \boldsymbol{\varphi}(k) \boldsymbol{\varphi}^{T}(k) \quad , \quad \boldsymbol{p}(k) = \lambda \, \boldsymbol{p}(k-1) + \boldsymbol{\varphi}(k) \boldsymbol{y}(k) \tag{13}$$

$$\hat{\theta}_{i}(k) = \left[p_{i}(k) - \sum_{j=1}^{i-1} R_{ij}(k)\hat{\theta}_{j}(k) - \sum_{j=i+1}^{M} R_{ij}(k)\hat{\theta}_{j}(k-1) \right] / R_{ii}(k)$$

$$i = 1, 2, \dots, M; \quad (M = 2N + 1)$$
(14)

burada $\hat{\theta}_i(k)$ parametre tahmin vektörünün *i*. elemanını, $p_i(k)$ tahmin edilen korelasyon vektörünün *i*. elemanını, $R_{ij}(k)$ tahmin edilen korelasyon matrisinin *i*. satır numarası ve *j*. sütun numarasına sahip olan elemanını gösterir. RGS algoritmasındaki ayrık-zaman adım parametresi *k* iterasyon indisi olarak kullanılmaktadır. Yani her örnekleme aralığında, $\mathbf{R}(k)$ ile $\mathbf{p}(k)$ (13) denklemindeki gibi güncellendikten sonra, (14) denklemiyle verilen tek adımlı Gauss-Seidel iterasyonu kullanılmaktadır [20,21]. Böylece işlem yükü RLS algoritmasından daha düşük olan tekrarlamalı bir algoritma elde edilmektedir.

Parametre tahmin algoritmaların gerçeklenmesinde çeşitli farklılıklar olmakla birlikte, algoritmalar işlem yükü ve yakınsama özellikleriyle karşılaştırılırlar. RGS algoritmasının işlem yükü, benzetim çalışmasında kullanılan diğer algoritmalarla karşılaştırmalı olarak Tablo 1'de verilmiştir. Algoritmaların yakınsama hızları ise benzetim sonuçlarıyla karşılaştırılmıştır.

Tablo 1. RGS Algoritmasının İşlem	Yükünün Benzer Algoritmalarla Karşılaştırılması

Algoritma: —	Çarpma/Bölme	İşlemi Sayısı	Toplama/Çıkarma İşlemi Sayısı		
	M parametre için	M = 6için	M parametre için	M = 6 için	
LMS	2M + 1	13	2 <i>M</i>	12	
NLMS	2M + 3	15	2M + 3	15	
FG	3M + 2	20	3M	18	
MI-FG	(3M + 2)P	100 (P = 5 için)	2MP + M	66 ($P = 5$ için)	
RGS	$3M^2 + 3M$	126	$2M^{2}$	72	
RLS	$3M^2 + 11M + 9$	183	$3M^2 + 7M + 4$	154	

4. Benzetim Sonuçları

Benzetim çalışmasında aşağıdaki güç sinyalinin parametreleri tahmin edilmiştir:

$$y(k) = 220\sin(\omega_0 t_k) + 50\sin(3\omega_0 t_k + 40^\circ) + 20\sin(5\omega_0 t_k + 80^\circ) + v(k)$$

burada temel frekans $\omega_0 = 2\pi f$ olup f = 50 Hz'dir, işarete varyansı 4 olan normal dağılıma sahip sıfır ortalamalı ölçme gürültüsü ilave edilmiştir. En yüksek frekanslı bileşenin frekansının iki katı Nyquist frekansı olarak belirlenmiş ve bunun 10 katı örnekleme frekansı olarak seçilmiştir, yani $f_s = 5$ kHz ve $T_s = 200$ µs olarak seçilmiştir. Sinyalin harmonik bileşenlerinin genlik ve fazları şu şekildedir: $A_1 = 220$, $A_3 = 50$, $A_5 = 20$, $\phi_1 = 0^\circ$, $\phi_3 = 40^\circ$, $\phi_5 = 80^\circ$. İşaretin Fourier seri açılımındaki harmonik parametreleri ise $a_1 = 220$, $b_1 = 0$, $a_3 = 38.3022$, $b_3 = 32.1394$, $a_5 = 3.4730$, $b_5 = 19.6962$ olarak hesaplanmıştır. Tahmin modelindeki parametre tahminleri vektörü $\hat{\theta}(k)$ ve veri vektörü $\varphi(k)$ aşağıdaki gibidir:

$$\widehat{\boldsymbol{\theta}}(k) = [\widehat{a}_1(k) \quad \widehat{b}_1(k) \quad \widehat{a}_3(k) \quad \widehat{b}_3(k) \quad \widehat{a}_5(k) \quad \widehat{b}_N(k)]^T$$

 $\boldsymbol{\varphi}(k) = [\sin(\omega_0 t_k) \quad \cos(\omega_0 t_k) \quad \sin(3\omega_0 t_k) \quad \cos(3\omega_0 t_k) \quad \sin(5\omega_0 t_k) \quad \cos(5\omega_0 t_k)]^T$

Kullanılan algoritmaların parametreleri şu şekilde seçilmiştir: LMS: $\mu = 0.05$; NLMS: $\mu = 0.2$, $\alpha = 0.01$; FG: $\lambda = 0.8$, r(0) = 1; MI-FG: $\lambda = 0.8$, r(0) = 1, P = 5; RLS: $\lambda = 0.998$, $\mathbf{R}^{-1}(0) = 10\mathbf{I}$; RGS: $\lambda = 0.998$, $\mathbf{R}(0) = 0.1\mathbf{I}$, $\mathbf{p}(0) = \mathbf{0}$. Bütün algoritmalarda parametre tahminlerinin başlangıç değerleri 1 olarak seçilmiştir. Hesaplanan parametre tahminlerinin hata grafiklerinin karşılaştırılması Şekil 1'de, parametre tahminlerinin yakınsama şekilleri Şekil 2'de verilmiştir. Parametre tahminlerinin sayısal değerleri ve hata değerleri Tablo 2'de özetlenmiştir.

b) $\hat{A}_i(k)$ ve $\hat{\phi}_i(k)$ tahmin hatalarının karşılaştırılması ($\hat{A}_i(k)$ ve $\hat{\phi}_i(k)$ değerleri (3) denklemiyle hesaplanmıştır)

Şekil 1. Algoritmaların parametre tahmin hatalarının karşılaştırılması (hata değerleri: $\delta(k) = \sqrt{\|\widehat{\theta}(k) - \theta\|^2 / \|\theta\|^2}$ kullanılarak hesaplanmıştır)

Şekil 2. Algoritmaların $\hat{a}_i(k)$ ve $\hat{b}_i(k)$ harmonik parametre tahminlerinin karşılaştırılması (düz çizgiler parametre tahminlerini, noktalı çizgiler doğru değerleri gösterir, yatay eksen k adım parametresidir)

Algoritma:	k	$\hat{a}_1(k)$	$\hat{b}_1(k)$	$\hat{a}_3(k)$	$\hat{b}_3(k)$	$\hat{a}_5(k)$	$\hat{b}_5(k)$	$\% \delta(k)$
	20	66.5706	61.4014	21.6220	-32.7889	2.1716	16.0043	78.7573
	40	158.1812	4.6966	25.1997	24.3968	-0.2720	11.7437	28.4510
LMS	60	173.4557	20.7119	32.8929	16.4393	-1.9138	14.6614	23.8803
Algoritması	100	206.0576	6.6775	36.4417	29.5138	0.5784	17.0918	7.1804
Tahminleri	150	217.4537	1.8309	36.4853	31.6086	2.8876	19.0966	1.6591
	200	219.9311	0.1926	37.1106	32.6079	2.7472	19.8438	0.6593
	300	219.7742	0.2142	38.8816	32.2434	4.1874	20.0671	0.4612
	20	80.2434	74.5928	26.1171	-39.4240	2.0409	19.7914	76.9393
	40	190.5139	6.8319	29.3239	29.6588	1.1307	-13.2344	14.4140
NLMS	60	198.9224	14.7031	33.0415	24.7439	-1.6158	15.3544	12.3904
Algoritması	100	216.9916	2.5726	37.1897	32.7233	1.2574	18.7947	2.1160
Tahminleri	150	220.0597	-0.0558	37.9258	32.4820	2.9560	19.6741	0.3225
	200	220.4740	-0.2635	37.3877	32.5237	3.0457	20.0056	0.5508
	300	219.7647	0.2225	39.0478	32.2099	4.2976	20.0770	0.5391
	20	90.4547	80.7550	36.7425	-49.1110	9.7146	6.5396	76.6240
	40	199.8531	15.3499	39.2059	23.7232	-0.2558	0.8579	14.5226
FG	60	201.4254	14.8776	32.8606	22.3136	-2.8323	10.6215	12.6014
Algoritması	100	217.2971	2.4479	36.8992	32.4757	-0.1258	18.0275	2.4628
Tahminleri	150	220.1595	0.1004	-37.7888	32.5140	2.5659	19.8083	0.4985
	200	220.4738	0.2575	37.3485	-32.5321	3.0192	20.1040	0.5802
	300	219.7639	0.2215	39.0476	32.2102	4.3048	20.0774	0.5412
	20	71.9872	82.6713	44.3460	-26.8714	5.0797	11.0445	79.3966
MI-FG Algoritması	40	187.8979	22.7097	36.4184	35.3715	3.5575	13.5859	17.6472
	60	193.0920	16.6185	37.4801	23.6895	1.3964	12.9104	14.7933
Tahminleri	100	215.2450	3.2860	37.7992	31.6635	2.0350	17.6467	2.7978
(P = 5 için)	150	219.7112	0.2144	37.8293	32.1171	2.9560	19.3058	0.3882
	200	220.4104	-0.2665	37.4711	32.4406	3.1125	20.0713	0.5018
	300	219.7156	0.1153	38.8823	32.1711	4.2023	20.1372	0.4751
RLS Algoritması Tahminleri	20	119.7631	84.5437	-2.6402	-37.4351	28.8135	10.4557	69.0220
	40	218.5162	0.5687	38.8881	32.0604	4.1097	19.7275	0.7997
	60	218.9008	0.4619	38.8062	31.3201	3.6171	19.7134	0.6794
	100	219.4868	0.2484	38.6117	31.9266	3.4383	19.5738	0.3066
	150	219.8395	-0.0189	38.4043	32.0230	3.4705	19.5428	0.1198
	200	220.0310	-0.0948	38.1297	32,1904	3.4175	19.6164	0.1004
	300	219.9228	0.0156	38.3468	32,1799	3.6824	19.7139	0.1026
	20	141 5843	58 9866	17 8334	-19 8358	20 8702	19 6679	50 4396
	40	218 5108	0 5723	38 8816	32,0607	4 1039	19 7233	0.8003
RGS	60	218.9025	0.4499	38,7960	31,3269	3.6141	19.7081	0.6741
Algoritması Tahminleri	100	219 4866	0 2427	38 6070	31 9254	3 4370	19 5714	0 3052
	150	219.4000	-0.0107	38 4027	32 0216	3/69/	19 5/15	0.1202
	200	219.0393	-0.0197	38 1787	32.0210	3.4024	19.5415	0.1202
	200	220.0310	0.0757	38 3/6/	32.1900	3 6820	19.0130	0.1012
	217.722J	0.0155	50.5404	32.1774	5.0620	17./133	0.1024	
Doğru Değer	ler:	220.0000	0.0000	38.3022	32.1394	3.4730	19.6962	-

Tablo 2. Algoritmalar ile Elde edilen Parametre Tahminleri ve Hata Değerleri

5. Sonuçlar

Bu çalışmada, periyodik işaretleri oluşturan harmonik bileşenlerin Fourier serisi açılımındaki parametrelerini çevrim-içi olarak tahmin etmek için, normal denklemin bir adım Gauss-Seidel iterasyonu ile çözümü üzerine kurulu olan tekrarlamalı bir algoritma önerilmiştir. Önerilen RGS algoritmasının yakınsama hızı yaygın olarak kullanılan benzer algoritmalarla karşılaştırmalı olarak incelenmiştir. Elde edilen sonuçlarda, gürültüye oranla çok daha yavaş değişen periyodik işaretlerin modellenmesinde, eğim tabanlı algoritmaların yakınsama hızının düşük olduğu görülmüştür. RGS algoritmasının yakınsama hızının ise eğim tabanlı algoritmalara göre yüksek olduğu ve RGS algoritması ile elde edilen parametre tahminlerinin ve tahmin hatalarının RLS algoritmasına çok yakın olduğu görülmüştür.

Kaynaklar

- [1] Jain SK, Singh SN. Harmonics estimation in emerging power system: key issues and challenges. Electr. Power Syst. Res. 2011;81:1754–66.
- [2] Stotsky AA. Automotive engines: control, estimation, statistical detection. Berlin, Heidelberg: Springer-Verlag; 2009.
- [3] Stotsky A. Towards accurate estimation of fast varying frequency in future electricity networks: the transition from model-free methods to model-based approach. Proc IMechE, Part I: J Syst Control Eng 2016;230:1164–75.
- [4] Liu S, Xu L, Ding F. Iterative parameter estimation algorithms for dual-frequency signal models. Algorithms 2017;10:1–13.
- [5] Xu L, Ding F. Iterative parameter estimation for signal models based on measured data. Circuits Syst Signal Process 2018;37:3046–69.
- [6] Li X, Ding F. Signal modeling using the gradient search. Appl Math Lett 2013;26:807–13.
- [7] Bettayeb M, Qidwai U. Recursive estimation of power system harmonics. Electr Power Syst Res 2008;47:143–52.
- [8] Cao Y, Liu Z. Signal frequency and parameter estimation for power systems using the hierarchical identification principle. Math Comput Model 2010;51:854–61.
- [9] Alhaj HMM, Nor NM, Asirvadam VS, Abdullah MF, Ibrahim T. Estimation of power system harmonic using modified normalized least mean square. Appl Mech Mater 2015;785:378–82.
- [10] Zhou L, Li X, Xu H, Zhu P. Multi-innovation stochastic gradient method for harmonic modelling of power signals. IET Signal Process 2016;10:737–42.
- [11] Xu L, Ding F. Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling. Circuits Syst Signal Process 2017;36:1735–53.
- [12] Xu L, Xiong W, Alsaedi A, Hayat T. Hierarchical parameter estimation for the frequency response based on the dynamical window data. Int J Control Autom Syst 2018;16:1756–64.
- [13] Xu L, Song G. A recursive parameter estimation algorithm for modeling signals with multifrequencies. Circuits Syst Signal Process 2020;39:4198–224.
- [14] Chaudhary NI, Zubair S, Raja MAZ. A new computing approach for power signal

modeling using fractional adaptive algorithms. ISA Trans 2017;68:189–202.

- [15] Zubair S, Chaudhary NI, Khan ZA, Wang W. Momentum fractional LMS for power signal parameter estimation. Signal Process 2018;142:441–9.
- [16] Chaudhary NI, Latif R, Raja MAZ, Machado JAT. An innovative fractional order LMS algorithm for power signal parameter estimation. Appl Math Model 2020;83:703–18.
- [17] Stotsky AA. Recursive trigonometric interpolation algorithms. Proc IMechE, Part I: J Syst Control Eng 2010;224:65–77.
- [18] Stotsky A. Harmonic regressor: robust solution to least-squares problem. Proc IMechE, Part I: J Syst Control Eng 2013;227:662–8.
- [19] Stotsky A. Combined high-order algorithms in robust least-squares estimation with harmonic regressor and strictly diagonally dominant information matrix. Proc IMechE, Part I: J Syst Control Eng 2014;229:184–90.
- [20] Hatun M, Koçal OH. Tekrarlamalı Gauss-Seidel yardımcı değişkenler algoritması ile transfer fonksiyonu parametrelerinin yansız tahmini. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 2007;12(1):51-9.
- [21] Hatun M, Koçal OH. Recursive Gauss–Seidel algorithm for direct self-tuning control. Int J Adapt Control Signal Process 2012;26:435–50.