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Abstract 

 
The paper presents analytical results of diffraction phenomena at the far field and solution of the wave 

equation with adequate boundary condition imposed by the pipe wall. An infinite pipe with ring source 

and perforated part is considered. The solution is obtained by using the Fourier transform technique in 

conjunction with the Wiener-Hopf method. Applying the Fourier transform technique, the boundary 

value problem is described by Wiener Hopf equation and then solved analytically. 
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1. Introduction 

 

The duct and pipe structures are commonly used in many technical and industrial devices to control 

the harmful and unwanted noise, such as exhaust systems, ventilation systems, modern aircraft jet 

and turbofan engines. Hence, the diffraction and radiation of sound waves are very important topic 

in applied areas and have been subjected to numerous past investigations. 

 

The first study to describe the sound field of an unflanged duct was made by Levine and Schwinger 

who considered the radiation of sound from rigid cylindrical duct [1]. The reduction of noise in 

duct systems is generally achieved by silencers. The most well-known of such silencers is 

acoustically absorbent linings, which have been widely analyzed in literature [2-4]. Another 

method of reducing noise is to create additional sound absorption by using the perforated structures. 

Perforated panel or plate, are commonly employed to reduce sound pressure levels across a broad 

range of applications including industrial installations and propulsion devices [5-7]. In particular, 

the problem of radiation of sound waves by ducts with perforated structures has been used as a 

model for many engineering applications, such as noise reduction in exhausts of automobile 

engines, in modern aircraft jet and turbofan engines, etc. The phenomenon of perforated cylinders 

has been investigated by various authors, with or without flow. This consideration is important 

because perforated cylinders provide some facilities for analyzing of sound radiation. Demir and 

Cinar considered the propagation of sound in an infinite two-part duct carrying mean flow inserted 

axially into a larger infinite duct with wall impedance discontinuity [8]. In their study, the 

perforated cylinder properties were investigated and some numerical results were presented. 

 

In the present work a solution is presented for the problem of diffraction of sound waves by an 

infinite pipe having perforated part. The geometry of the problem under consideration is sketched 

in Fig. 1. The part 0z   of the inner cylinder is hard walled while the part 0z   is perforated. 
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Wiener-Hopf equation is derived using Fourier transform with the help of sophisticated and 

suitable method known as Wiener-Hopf technique [9]. 

 

 
 

Figure 1. Geometry of the problem 

 

This article is organized as follows. Formulation of the problem and boundary-continuity 

conditions are described in Section 2. The Wiener-Hopf equation is formed in Section 3 and solved 

in Section 4. Analysis of the diffracted field is evaluated in Section 5. To end with, conclusions are 

summarized in Section 6. 

 

 

2. Formulation of the Problem 

 

Consider the diffraction of acoustic waves with an infinite cylindrical pipe system consisting of a 

two part inner cylinder of radius r a=  and a ring source with radius r b a=  . Pipe walls are 

assumed to be infinitely thin and they occupy the region { , ( , )}r a z=  −   illuminated by a ring 

source located at { , , 0}r b a z c c=  = −   (see Fig. 1). The part 0z   of the inner cylinder is hard 

walled while the part 0z   is perforated. From the symmetry of the geometry of the problem and 

of the ring source, the total field will be independent of azimuth   everywhere in circular 

cylindrical coordinate system ( , , )r z . Therefore, a scalar potential ( , )r z  which defines the 

acoustic pressure and velocity by 0p i =  and gradv = , respectively, is introduced. Here 0  

is the is the density of the undisturbed medium. Time dependence is assumed to be exp( )i t−  and 

suppressed throughout this paper, where   is the angular frequency. For analysis purposes it is 

convenient to express the total field as 
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, 1, 2,3j j =  which satisfy the Helmholtz equation 

 

705



 

B. TIRYAKIOGLU/ ISITES2019 SanliUrfa - Turkey    

 

 

 

 
2

2

2

1
( , ) 0,    1,2,3jr k r z j

r r r z


    
+ + = =  

    
  (2) 

 

is to be determined with the aid of the following boundary and continuity relations. The boundary 

condition on the rigid surface can be given in terms of the potential functions 2  and 3   

 

 
2 ( , ) 0,  0a z z

r



= 


  (3) 

 
3( , ) 0,  0a z z

r



= 


  (4) 

 

Consider now the continuity conditions related to total field at ,  0r a z=   which are given by 

 

 
2 3( , ) ( , ) 0,  0a z a z z

r r
 

 
− = 

 
  (5) 

 
2 3 3( , ) ( , ) ( , ),  0

p
a z a z i a z z

k r


  


− = 


  (6) 

 

where 
p  is the specific impedance, describing the acoustic properties of the perforated screen. 

For stationary media, the empirical formula of the specific acoustic impedance 
p  is given by [5] 

 

 [0.006 ( 0.75 )] /p w hik t d = − +   (7) 

 

where wt  is the screen thickness, hd , the perforate hole diameter and   the porosity. By the 

definition of the ring source given as 

 

 1 2( , ) ( , ) ( ),  b z b z z c z
r r
  

 
− = + −   

 
 (8) 

 1 2( , ) ( , ) 0,  b z b z z − = −     (9) 

 

where   is dirac delta function. 

 

 

3. Derivation of the Wiener-Hopf Equation 

 

The unknown fields 1 2( , ), ( , )r z r z   and 3( , )r z  satisfy (2) for ( , )z −  . By taking Fourier 

transform of these equations, one can obtain the following integral representations 

 

 (1)

1 0( , ) ( ) ( )exp( )
2

L

k
r z A H kr i kz d    


= −   (10) 
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2 0 0( , ) [ ( ) ( ) ( ) ( )]exp( )

2
L

k
r z B J kr C Y kr i kz d      


= + −   (11) 

 3 0( , ) ( ) ( )exp( )
2

L

k
r z D J kr i kz d    


= −  (12) 

 

where L  is a suitable inverse Fourier transform integration contour along or near the real axis in 

the complex α-plane. ( ), ( ), ( )A B C    and ( )D   are spectral coefficients to be determined. 0J  

and 0Y  are the Bessel and Neumann functions of order zero and (1)

0 0 0H J iY= +  is the Hankel 

function of the first type.   is square root function which is defined as 

 

 2( ) 1 ,  Im( ) 0   = −    (13) 

 

Branch cuts for   is taken on the line from 1  to   and from −  to 1− . As usual in this kind of 

Wiener-Hopf problem, we will assume that the surrounding medium is slightly lossy and k  has a 

small positive imaginary part. The lossless case can be obtained by letting Im 0k →  at the end of 

the analysis. Applying the boundary condition (4) on r a=  and taking Fourier transforms gives 

 

 
1( ) ( ) ( )D kJ ka   +− =    (14) 

 

Continuity relation at r a=  yields 

 

 1 1[ ( ) ( )] ( ) ( ) ( )D B J ka C Y ka    − =   (15) 

 0 0[ ( ) ( )] ( ) ( ) ( ) ( ) ( )
p

D B J ka C Y ka i
k


      − +− − =  −   (16) 

  

where 
+  and 

−  are a function analytic at the upper (Im 0 or Im 0 and Re 0)   =   and 

lower (Im 0 or Im 0 and Re 0)   =   half plane and defined as 

 

 
3

0

( ) ( , )exp( )a z i kz dz
r

  


+ 
 =


  (17) 

 

0

2 3( ) [ ( , ) ( , )]exp( )a z a z i kz dz   −

−

 = −   (18) 

 

The spectral coefficient ( )D   can be found easily from (14) while ( ), ( )A B   and ( )C   are 

related to each other by the definition of the ring source given in (8,9), application of the boundary 

conditions on r b=  yields 

 

 
(1)

1 1 1( ) ( ) ( ) ( ) ( ) ( ) exp( )kA H kb kB J kb kC Y kb i kc         = + − −  (19) 

 
(1)

0 0 0( ) ( ) ( ) ( ) ( ) ( )A H kb B J kb C Y kb     = +  (20) 
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From the relations (19) and (20), we obtain 

 

 0( ) ( ) exp( ) ( )
2

b
B A i kc Y kb


   = + −  (21) 

 0( ) ( ) exp( ) ( )
2

b
C iA i kc J kb


   = − −  (22) 

 

(14) and (15) allow us to express the unknown coefficient ( )A   in terms of the analytic function 

( )+  as follows 

 

 
0 1 0 1(1) (1)

1 1

( ) exp( )
( ) [ ( ) ( ) ( ) ( )]

( ) 2 ( )

b i kc
A J kb Y ka Y kb J ka

kH ka H ka

  
    

  

+ −
= − + −  (23) 

 

The substitution of ( ), ( )B C   and ( )D  into (16) yields 

 

 

(1) 0
0

1

0 0 0 0

( )
( ) ( ) ( )

( )

                           ( ) exp( ) [ ( ) ( ) ( ) ( )]
2

p J ka
A H ka i

k kJ ka

b
i kc J kb Y ka Y kb J ka

 
  

 


     

+

−

 
=  − 

 

− + − −

 (24) 

 

Inserting now (23) into (24) we get the following Wiener-Hopf equation: 
 

 
(1)

0

(1)

1

( )
( ) ( ) ( ) exp( )

( )

H kbb
M i kc

a kH ka


   

 

+ − + = −  (25) 

where 

 
(1)

0 0

(1)

1 1

( ) ( )
( )

( ) ( )

pJ ka H ka
M i

kJ ka kH ka k

 


   
= − −   (26) 

 

 

4. Solution of the Wiener-Hopf Equation 

 

Consider the Wiener-Hopf equation in (25) and rearrange it using (26) in the following form 

 

 
(1)

0

(1)

1

( )
( ) ( ) ( ) ( ) exp( ) ( )

( )

H kbb
M M i kc M

a kH ka


     

 

+ + − − − + = −   (27) 

 

Here, ( )M +  and ( )M −  are the split functions regular and free of zeros in the upper and lower 

half planes, respectively, resulting from the Wiener-Hopf factorization of ( )M   as [10] 

708



 

B. TIRYAKIOGLU/ ISITES2019 SanliUrfa - Turkey    

 

 

 

 ( ) ( ) / ( )M M M  + −=   (28) 

 

Now consider (27), by using the classical decomposition procedure for complex term, one gets 

 

 ( ) ( ) ( ) ( ) ( ) ( )M M Q Q     + + − − + − + = +   (29) 

 

Decomposing ( )Q   we obtain split functions ( )Q +  and ( )Q −  which are regular in the upper 

and lower half planes, respectively. 

 

 
(1)

0

(1)

1

( )
( ) exp( ) ( ) ( ) ( )

( )

H kbb
Q i kc M Q Q

a kH ka


    

 

− + −= − = +  (30) 

 

The Wiener-Hopf equation in (29), yields 

 

 ( ) ( ) ( ) ( ) ( ) ( )M Q M Q     + + + − − − − = − +  (31) 

 

Now both sides of (31) are analytical functions on upper and lower regions. From analytical 

continuation principle and Liouville's theorem, we get the Wiener-Hopf solution 

 

 ( ) ( ) / ( )Q M  + + + =  (32) 

 

 

5. Analysis of the Diffracted Field 

 

The total field in the region r b  can be obtained from (10)  

 

 (1)

1 0( , ) ( ) ( )exp( )
2

L

k
r z A H kr i kz d    


= −   (33) 

 

Inserting ( )A   into (33) and utilizing the asymptotic expansion of (1)

0 ( )H kr  as kr →   

 

 
(1)

0

2
( ) exp( / 4)H kr i kr i

kr
  


= −   (34) 

 

and using the saddle point technique, one obtains  

 

 

1 1
1 (1)

1 1 1 1

0 2 1 2 0 2 1 2 1
1 (1)

1 2 1

( cos ) exp( )
( , )

sin ( sin )

[ ( sin ) ( in ) ( in ) ( in )] exp( )
           exp( cos )

2 ( sin )

ikRi
R

H ka kR

J kb Y ka Y kb J ka ikRikb
ikc

H ka kR


 

  

   




+ −
=

−
−

  (35) 
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where ( )+  is given by (32). 
1 2,R R  and 1 2,   are the spherical coordinates defined by  

 

 
1 1 1 1sin ,  cosr R z R = =   (36)  

 

and 

 2 2 2 2sin ,  cosr R z c R = + =  (37) 

 

 

6. Conclusions 

 

The diffraction of sound waves emanating from a ring source by a semi-infinite pipe, whose parts 

0z   and 0z   are hard walled and perforated, respectively is investigated rigorously by the 

Wiener-Hopf method.  A semi perforated pipe was considered. The problem is modelled two 

dimensional due to symmetry of the geometry. The problem is formulated into a Wiener-Hopf 

equation. This equation is solved analytically with the help of Wiener-Hopf technique.  

 

In forthcoming study, to a better understanding the effect of perforated part on the diffracted field, 

numerical calculations and graphics are going to be obtained. 
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