The Academic Perspective Procedia publishes Academic Platform symposiums papers as three volumes in a year. DOI number is given to all of our papers.
Publisher : Academic Perspective
Journal DOI : 10.33793/acperpro
Journal eISSN : 2667-5862
[1] Chen, J., Phung, T., Blackburn, T., Ambikairajah, E., & Zhang, D. (2016). Detection of high impedance faults using current transformers for sensing and identification based on features extracted using wavelet transform. IET Generation, Transmission and Distribution, 10(12), 2990–2998. https://doi.org/10.1049/iet-gtd.2016.0021
[2] Lavanya, S., Prabakaran, S., & Kumar, N. A. (2022). Behavioral dynamics of high impedance fault under different line parameters. energy, 9, 12.
[3] Wang, S., & Dehghanian, P. (2020). On the Use of Artificial Intelligence for High Impedance Fault Detection and Electrical Safety. IEEE Transactions on Industry Applications, 56(6), 7208–7216. https://doi.org/10.1109/TIA.2020.3017698
[4] Mahanty, R., & Gupta, P. (2004). Voltage stability analysis in unbalanced power systems by optimal power flow. IEE Proceedings-Generation, Transmission and …, 151(3), 201–212. https://doi.org/10.1049/ip-gtd
[5] Güllüdereli, M. (2007). Enerji iletim sistemlerinde arıza analizinin otomasyonel çözümleri. Sakarya Üniversitesi.
[6] Mondal, S., & Pradhan, R. (2024, November). Fault Classification for High Impedance Faults Using Back Propagation Based Artificial Neural Network Technique. In 2024 International Conference on Sustainable Power & Energy (ICSPE) (pp. 1-6). IEEE
[7] Attar, M. S., & Miveh, M. R. (2025). High‐Impedance Fault Detection in Distribution Networks Based on Support Vector Machine and Wavelet Transform Approach (Case Study: Markazi Province of Iran). Energy Science & Engineering, 13(3), 1171-1183.
[8] Cano, A., Arévalo, P., Benavides, D., & Jurado, F. (2024). Integrating discrete wavelet transform with neural networks and machine learning for fault detection in microgrids. International Journal of Electrical Power & Energy Systems, 155, 109616.
[9] Mahzan, N. N., Othman, M. L., Wahab, N. I. A., Veerasamy, V., Salim, N. A., Abidin, A. A. Z., & Islam, S. Z. (2025). Performance Analysis of Intelligent Classifiers for High Impedance Fault Detection in a PV-Integrated IEEE-13 Bus System Analyse des performances des classificateurs intelligents pour la détection des défauts à haute impédance dans un système de bus IEEE-13 intégré au système PV. IEEE Canadian Journal of Electrical and Computer Engineering.
[10] Guttimari, T. Y. (2024, August). K-Nearest Neighbor Based High Impedance Fault Detection for Radial Feeder. In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS) (pp. 1-8). IEEE.
[11] Farkhani, J. S., Çelik, Ö., Ma, K., Bak, C. L., & Chen, Z. (2024). Fault Detection, Classification, and Location Based on Empirical Wavelet Transform-Teager Energy Operator and ANN for Hybrid Transmission Lines in VSC-HVDC Systems. Journal of Modern Power Systems and Clean Energy.
[12] Nayak, P., Das, S. R., Mallick, R. K., Mishra, S., Althobaiti, A., Mohammad, A., & Aymen, F. (2024). 2D-convolutional neural network based fault detection and classification of transmission lines using scalogram images. Heliyon, 10(19).
[13] Sakovich, N., Aksenov, D., Pleshakova, E., & Gataullin, S. (2025). Wavelet-Based Optimization and Numerical Computing for Fault Detection Method—Signal Fault Localization and Classification Algorithm. Algorithms, 18(4), 217.
[14] Kurmaiah, A., & Vaithilingam, C. (2025). Optimization of Fault Identification and Location Using Adaptive Neuro-Fuzzy Inference System and Support Vector Machine for an AC Microgrid. IEEE Access.
[15] Kumar, V. R., & Jeyanthy, P. A. (2025). Fault Classification and Detection in Transmission Lines by Hybrid Algorithm Associated Support Vector Machine. Transactions on Emerging Telecommunications Technologies, 36(3), e70034.
[16] Villarreal, R., Chamorro-Solano, S., Vega-Sampayo, Y., Espejo, C. A., Cantillo, S., Gaviria, L., ... & Montoya, C. (2025). A New Approach to Electrical Fault Detection in Urban Structures Using Dynamic Programming and Optimized Support Vector Machines. Sensors, 25(7), 2215.
[17] Samal, S., Samantaray, S. R., & Sharma, N. K. (2025). A New Differential Index-Based Fault Detection Scheme for Microgrids. IEEE Transactions on Industry Applications.
[18] Shalby, E. M., Abdelaziz, A. Y., Ahmed, E. S., & Abd-Elhamed Rashad, B. (2025). A comprehensive guide to selecting suitable wavelet decomposition level and functions in discrete wavelet transform for fault detection in distribution networks. Scientific Reports, 15(1), 1160.
[19] Janiabadi, A. A., & Hasheminejad, S. (2025). A new algorithm for the identification of high impedance faults in distribution systems utilizing S transform. Ain Shams Engineering Journal, 16(4), 103334.