The Academic Perspective Procedia publishes Academic Platform symposiums papers as three volumes in a year. DOI number is given to all of our papers.
Publisher : Academic Perspective
Journal DOI : 10.33793/acperpro
Journal eISSN : 2667-5862
1. Kossmann, C. E., 1953. The normal electrocardiogram. Circulation, 8(6): 920–936.
2. Gopinathannair, R., Etheridge, S. P., Marchlinski, F. E., Spinale, F. G., et al., 2015. Arrhythmia-induced cardiomyopathies: mechanisms, recognition, and management. Journal of the American College of Cardiology, 66(15): 1714–1728.
3. Wan, X., Liu, Y., Mei, X., Ye, J., et al., 2024. A novel atrial fibrillation automatic detection algorithm based on ensemble learning and multi-feature discrimination. Medical & Biological Engineering & Computing, 62(6): 1809–1820.
4. Ojha, M. K., Wadhwani, S., Wadhwani, A. K., Shukla, A., 2022. Automatic detection of arrhythmias from an ECG signal using an auto-encoder and SVM classifier. Physical and engineering sciences in medicine, 45(2): 665–674.
5. Kumar, K. S., Yazdanpanah, B., Kumar, P. R., 2015. Removal of noise from electrocardiogram using digital FIR and IIR filters with various methods. 2015 International conference on communications and signal processing (ICCSP) (pp. 157–162). IEEE.
6. Wang, K.-C., Liu, K.-C., Peng, S.-Y., Tsao, Y., 2023. Ecg artifact removal from single-channel surface emg using fully convolutional networks. ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1–5). IEEE.
7. Noskova, E., Tumakov, D., 2024. Analysis of wavelet transform application for filtering real ecg signals from high-frequency noise. 2024 26th International Conference on Digital Signal Processing and its Applications (DSPA) (pp. 1–5). IEEE.
8. Singh, O., Sunkaria, R. K., 2017. ECG signal denoising via empirical wavelet transform. Australasian physical & engineering sciences in medicine, 40: 219–229.
9. Das, M., Sahana, B. C., 2025. A Deep-learning-based Auto Encoder-Decoder Model for Denoising Electrocardiogram Signals. IETE Journal of Research, 71(1): 326–340.
10. Issa, M. F., Yousry, A., Tuboly, G., Wang, Z., et al., 2025. Enhancing single-lead electrocardiogram arrhythmia detection with empirical mode decomposition. Neural Computing and Applications, 1–23.
11. Lahmiri, S., 2014. Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains. Healthcare technology letters, 1(3): 104–109.
12. Plawiak, P., 2017. ECG signals (1000 fragments). Mendeley Data, v3.
13. Altıntop, Ç. G., 2025. Kalp Ritim Bozukluklarının Çok Sınıflı Sınıflandırılmasında ReliefF Yöntemi ve Makine Öğrenimi Tabanlı Yaklaşım TT - The ReliefF Method and Machine Learning-Based Approach in the Multi-Class Classification of Cardiac Arrhythmias. Black Sea Journal of Engineering and Science, 8(3): 3–4. (https://doi.org/10.34248/bsengineering.1566475)
14. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., et al., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971): 903–995.
15. Dragomiretskiy, K., Zosso, D., 2013. Variational mode decomposition. IEEE transactions on signal processing, 62(3): 531–544.
16. Bentaleb, D., Khatar, Z., 2025. Multi-criteria Bayesian optimization of Empirical Mode Decomposition and hybrid filters fusion for enhanced ECG signal denoising and classification: Cardiac arrhythmia and myocardial infarction cases. Computers in Biology and Medicine, 184: 109462.
17. Zhao, S., Gui, X., Zhang, J., Feng, H., et al., 2025. An improved ECG data compression scheme based on ensemble empirical mode decomposition. Biomedical Signal Processing and Control, 101: 107134.
18. Ma, M., Du, M., Feng, Q., Xiahou, S., 2024. A new particle filter algorithm filtering motion artifact noise for clean electrocardiogram signals in wearable health monitoring system. Review of Scientific Instruments, 95(1).
19. Menaceur, N. E., Kouah, S., Derdour, M., 2024. Adaptive filtering strategies for ecg signal enhancement: A comparative study. 2024 6th International Conference on Pattern Analysis and Intelligent Systems (PAIS) (pp. 1–6). IEEE.
20. Malleswari, P. N., Bindu, C. H., Prasad, K. S., 2024. Denoising methods for removal of Baseline Wander, AWGN and power line interface noises in ECG signal: a comparative analysis. Australian Journal of Electrical and Electronics Engineering, 1–11.
21. Zhang, C., Chen, W., Chen, H., 2025. Denoising for ECG signals based on VMD and RLS. Journal of Measurements in Engineering, 13(1): 185–204.