The Academic Perspective Procedia publishes Academic Platform symposiums papers as three volumes in a year. DOI number is given to all of our papers.
Publisher : Academic Perspective
Journal DOI : 10.33793/acperpro
Journal eISSN : 2667-5862
[1] Kim, M., Yang, J., Ahn, W. Y., & Choi, H. J. Machine learning analysis to identify digital behavioral phenotypes for engagement and health outcome efficacy of a mHealth intervention for obesity: Randomized controlled trial. Journal of Medical Internet Research, 2021; 23(6), e27218.
[2] Sağlam, L. Clinical evaluation of nicotine dependence. Güncel Göğüs Hastalıkları Serisi, 2017; 4(1), 78-89.
[3] Şengül, A. C. Drug misuse and drug addiction. Turkiye Klinikleri Neurology-Special Topics, 2010; 3(1), 199-203.
[4] Armbruster, W. S., Di Stilio, V. S., Tuxill, J. D., Flores, T. C., & Runk, J. L. Covariance and decoupling of floral and vegetative traits in nine Neotropical plants: A re-evaluation of Berg’s correlation-Pleiades concept. American Journal of Botany, 1999; 86(1), 39–55.
[5] Karakülah, K., Şengül, C., & Balcı Şengül, C. Genetics of smoking addiction. Psikiyatride Güncel Yaklaşımlar - Current Approaches in Psychiatry, 2014; 6(3), 284-293.
[6] Uysal, M. A. How does nicotine take you captive? Neurobiology of tobacco addiction. Güncel Göğüs Hastalıkları Serisi, 2016; 4(1), 37-43.
[7] Goh, Y. S., Ow Yong, J. Q. Y., Chee, B. Q. H., Kuek, J. H. L., & Ho, C. S. H. Machine learning in health promotion and behavioral change: Scoping review. Journal of Medical Internet Research, 2022; 24(6), e35831.
[8] Obey, K. (24.09.2024). Drug consumption prediction. Kaggle. https://www.kaggle.com/code/obeykhadija/drug-consumption-prediction#Feature-Engineering
[9] Glasner-Edwards, S., Mooney, L. J., Marinelli-Casey, P., Hillhouse, M., Ang, A., & Rawson, R. Risk factors for suicide attempts in methamphetamine-dependent patients. The American Journal on Addictions, 2008; 17(1), 24-27.
[10] Nordahl, T. E., Salo, R., & Leamon, M. Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: A review. The Journal of Neuropsychiatry and Clinical Neurosciences, 2023; 15(3), 317-325.
[11] Hernández-Llanes, N. F., Sánchez-Domínguez, R., Pérez-Zapata, S., Fernández-Domínguez, E., & González-Rosales, F. Machine learning analysis to identify factors associated with requesting tobacco cessation services among users of an online self-diagnostic questionnaire in Mexico. Research Square. 2023.
[12] Almahmood, M., Najadat, H., Alzubi, D., Abualigah, L., Zitar, R. A., Abualigah, S., & AL-Saqqar, F. Predictive model of psychoactive drugs consumption using classification machine learning algorithms. Applied and Computational Engineering, 2023; 8(1), 853–858.
[13] Liu, J., Rensch, J., Wang, J., Jin, X., Vansickel, A., Edmiston, J., & Sarkar, M. Nicotine pharmacokinetics and subjective responses after using nicotine pouches with different nicotine levels compared to combustible cigarettes and moist smokeless tobacco in adult tobacco users. Psychopharmacology, 2022; 239(9), 2863–2873.
[14] Suma, S. N., Nataraja, P., & Sharma, M. K. Internet addiction predictor: Applying machine learning in psychology. In N. N. Chiplunkar & T. Fukao (Eds.), Advances in Artificial Intelligence and Data Engineering. AIDE 2019. Advances in Intelligent Systems and Computing Vol. 1133. 2021, pp. 399-409.
[15] Bozkurt, N., & Bozkurt, A. İ. Assessment of the Fagerström Test for Nicotine Dependence (FTND) used in the determination of nicotine dependence and developing a new test for nicotine dependence. Pamukkale University Faculty of Medicine, Department of Chest Diseases, Denizli; Pamukkale University Faculty of Medicine, Department of Public Health, Denizli. 2016.
[16] Wang, P., Abdin, E., Asharani, P., Seet, V., Devi, F., Roystonn, K., Lee, Y. Y., Cetty, L., Teh, W. L., Verma, S., & others. Nicotine dependence in patients with major depressive disorder and psychotic disorders and its relationship with quality of life. International Journal of Environmental Research and Public Health, 2021; 18(24), 13035.
[17] Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 2013; 49(4), 764-766.
[18] Smith, J., & Johnson, A. Evaluating the role of precision in machine learning models for medical diagnosis. Journal of Medical Systems, 2020; 44(8), 1-10.
[19] Pala, M. A., & Yıldız, M. Z. (2024). Improving cellular analysis throughput of lens-free holographic microscopy with circular Hough transform and convolutional neural networks. Optics & Laser Technology, 176, 110920.
[20] Akgul, A., Karaca, Y., Pala, M. A., Çimen, M. E., Boz, A. F., & Yildiz, M. Z. (2024). Chaos theory, advanced metaheuristic algorithms and their newfangled deep learning architecture optimization applications: a review. Fractals, 32(03), 2430001.