References
[1] Özerinç, S., Kakaç, S., & Yazıcıoğlu, A. G. Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluidics and Nanofluidics, 20108;(2);145-170.
[2] S. Lee, S.U.S. Choi, S. Li, J.A. Eastman. Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Trans.-T. ASME 121, 1999;280–289.
[3] Li, Y., Tung, S., Schneider, E., & Xi, S. A review on development of nanofluid preparation and characterization. Powder technology 2009;196(2);89-101.
[4] K.J. Lee, S.-H. Yoon, J. Jang. Carbon nanofibers: a novel nanofilter for nanofluid applications, Small 3, 2007;1209–1213.
[5] H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, Q. Wu. Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Appl. Phys. 91, 2002;4568–4572.
[6] W. Yu, H. Xie, Y. Li, L. Chen, Q. Wang. Experimental investigation on the thermal transport properties of ethylene glycol based nanofluids containing low volume concentration diamond nanoparticles, Colloids Surf. 2011; A 380;1–5.
[7] M. Pastoriza-Gallego, L. Lugo, J. Legido, M. Piñeiro. Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids, Nanoscale Res. Lett. 2011;6;(1);221.
[8] M. Ghanbarpour, E.B. Haghigi, R. Khodabandeh. Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid, Exp. Thermal Fluid Sci. 2014;53 (0);227–235.
[9] G. Zyla, J. Fal, P. Estelle. The influence of ash content on thermophysical properties of ethylene glycol based graphite/diamonds mixture nanofluids, Diamond & Related Materials, 2017;74;81-89.
[10]E.B. Elçioğlu, A.G. Yazıcıoğlu, S. Kakaç. Nanoakışkan Viskozitesinin Karşılaştırmalı Değerlendirmesi, Isı Bilimi ve Tekniği Dergisi, 2014;34;1;137-151.
[11]Talib, N., & Rahim, E. A. Performance of modified jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining. Tribology International, 2018;118;89-104.
[12]Tavman, I., Turgut, A. An Investigation on thermal conductivity and viscosity of water based nanofluids, Microfluids Based Microsystems, NATO Science for Peace and Security Series A: Chemistry and Biology, 2010;0;139-162.
[13]Sharma, A. K., Tiwari, A. K., & Dixit, A. R. Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review. Journal of cleaner production, 2016;127;1-18.
[14]Liu, M. S., Lin, M. C. C., Huang, I. T., & Wang, C.C. Enhancement of thermal conductivity with carbon nanotube for nanofluids. International communications in heat and mass transfer, 2005;32(9);1202-1210.
[15]Sharma, S. K., & Gupta, S. M. Preparation and evaluation of stable nanofluids for heat transfer application: a review. Experimental Thermal and Fluid Science, 2016;79;202-212.
[16]Devendiran, D. K., & Amirtham, V.A. A review on preparation, characterization, properties and applications of nanofluids. Renewable and Sustainable Energy Reviews, 2016;60;21-40.
[17]Nasiri, A., Shariaty-Niasar, M., Rashidi, A., Amrollahi, A., & Khodafarin, R. Effect of dispersion method on thermal conductivity and stability of nanofluid. Experimental thermal and fluid science, 2011;35(4);717-723.
[18]Wang, J. J., Zheng, R. T., Gao, J. W., & Chen, G. Heat conduction mechanisms in nanofluids and suspensions. Nano Today, 2012;7(2);124-136.
[19]Wusiman, K., Jeong, H., Tulugan, K., Afrianto, H., & Chung, H. Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS. International Communications in Heat and Mass Transfer, 2013;41, 28-33.
[20]Manimaran, R., Palaniradja, K., Alagumurthi, N., Sendhilnathan, S., & Hussain, J. Preparation and characterization of copper oxide nanofluid for heat transfer applications. Applied Nanoscience, 2014;4(2);163-167.
[21]Alawi, O.A., Azwadi, N., Sidik, C., Xian, H.W., Kean, T.H., & Kazi, S.N. Thermal conductivity and viscosity models of metallic oxides nanofluids, International Journal of Heat and Mass Transfer, 2018;116;1314-1325.
[22]S.M.S. Murshed, K.C. Leong, C. Yang, A combined model for the effective thermal conductivity of nanofluids, Appl. Therm. Eng. 29;2009;2477–2483.
[23]Harris, A., Kazachenko, S., Bateman, R., Nickerson, J., & Emanuel, M. Measuring the thermal conductivity of heat transfer fluids via the modified transient plane source (MTPS). Journal of Thermal Analysis and Calorimetry, 2014;116(3);1309-1314.